1
|
Rownaghi M, Keramat-Jahromi M, Golmakani MT, Niakousari M. Cold plasma-induced structural and thermal enhancements in marshmallow root mucilage-gelatin aerogels. Curr Res Food Sci 2025; 10:101027. [PMID: 40161309 PMCID: PMC11951209 DOI: 10.1016/j.crfs.2025.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Aerogels are highly regarded for their low density and large surface area, attracting significant attention due to their diverse applications. This study explored nitrogen cold plasma's impact on the structure and thermal stability of mucilage-gelatin aerogels (MGA). Aerogels were prepared using marshmallow root mucilage and gelatin in a 1:1 ratio and gelatin-only as a blank under different pH conditions (5 and 7). Rheological and texture analyses identified pH 7 as optimal. Aerogels at pH 7 were then exposed to cold plasma for varying durations (0, 3, and 6 min). Thermogravimetric analysis (TGA), differential thermal analysis (DTA), and X-ray diffraction (XRD) showed enhanced thermal stability and structural changes with increased plasma exposure. Fourier-transform Infrared Spectroscopy (FTIR) revealed functional group changes, and contact angle measurements showed that 3 min of plasma treatment increased hydrophilicity (88.37-82.05°), while 6 min enhanced hydrophobicity in 1:1 MGA (93.27°). BET (Brunauer-Emmett-Teller) analyses of the MGA samples revealed changes in surface area (2.9-4.33 m2/g after 3 min of plasma) and BJH (Barrett-Joyner-Halenda) pore volume (0.004-0.02 cm3/g), with a complex trend over time. This study highlights nitrogen cold plasma's potential to enhance mucilage-based biopolymer aerogels, paving the way for advanced materials via optimized treatments.
Collapse
Affiliation(s)
- Marzieh Rownaghi
- Department of Food Science & Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mahdi Keramat-Jahromi
- Department of Mechanical Engineering of Biosystems, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad-Taghi Golmakani
- Department of Food Science & Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehrdad Niakousari
- Department of Food Science & Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Vasil’kov A, Tseomashko N, Tretyakova A, Abidova A, Butenko I, Pereyaslavtsev A, Arkharova N, Volkov V, Shtykova E. Wound Coating Collagen-Based Composites with Ag Nanoparticles: Synthesis, Structure and Biological Activity. COATINGS 2023; 13:1315. [DOI: 10.3390/coatings13081315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The search for materials for a new generation of wound coatings is important due to the increase in antibiotic-resistant microorganisms and the number of patients with untreatable chronic purulent wounds. Metal nanoparticles, specifically silver nanoparticles, have antimicrobial activity and do not induce known bacterial resistance. To obtain new Ag-containing nanocomposites, type I collagen was extracted by an enzyme–acid method from cattle tendons. Silver nanoparticles were obtained by an environmentally safe method, metal-vapor synthesis (MVS), which enables obtaining metal nanoparticles without impurities. For this, metal vapors were cocondensed in a vacuum of 10−2 Pa on the walls of a quartz reactor cooled to 77 K using acetone as an organic dispersion medium. The composition of the collagen surface was determined by XPS using the spectra of C1s, N1s, and O1s. The presence of a peak with a binding energy of approximately 368.57 eV in the Ag 3d5/2 spectrum indicates the state of Ag0 silver atoms in the nanocomposite. SEM images showed that collagen contributes to the effective stabilization of Ag nanoparticles with an average size of 13.0 ± 3.5 nm. It was found that collagen is non-toxic and biocompatible with skin cells and fibroblasts. The collagen–Ag nanoparticle nanocomposites exhibited antimicrobial activity against bacteria Bacillus subtilis, Escherichia coli, and fungi Aspergillus niger.
Collapse
Affiliation(s)
- Alexander Vasil’kov
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119991 Moscow, Russia
| | - Natalya Tseomashko
- Department of Interuniversity Research Laboratory, Tashkent Medical Academy, Tashkent 100109, Uzbekistan
| | - Anastasia Tretyakova
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119991 Moscow, Russia
| | - Aziza Abidova
- Department of Interuniversity Research Laboratory, Tashkent Medical Academy, Tashkent 100109, Uzbekistan
| | - Ivan Butenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119991 Moscow, Russia
- G.F. Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | | | - Natalia Arkharova
- Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics” RAS, 119333 Moscow, Russia
| | - Vladimir Volkov
- Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics” RAS, 119333 Moscow, Russia
| | - Eleonora Shtykova
- Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics” RAS, 119333 Moscow, Russia
| |
Collapse
|
3
|
Vasil'kov A, Butenko I, Naumkin A, Voronova A, Golub A, Buzin M, Shtykova E, Volkov V, Sadykova V. Hybrid Silver-Containing Materials Based on Various Forms of Bacterial Cellulose: Synthesis, Structure, and Biological Activity. Int J Mol Sci 2023; 24:ijms24087667. [PMID: 37108827 PMCID: PMC10142189 DOI: 10.3390/ijms24087667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Sustained interest in the use of renewable resources for the production of medical materials has stimulated research on bacterial cellulose (BC) and nanocomposites based on it. New Ag-containing nanocomposites were obtained by modifying various forms of BC with Ag nanoparticles prepared by metal-vapor synthesis (MVS). Bacterial cellulose was obtained in the form of films (BCF) and spherical BC beads (SBCB) by the Gluconacetobacter hansenii GH-1/2008 strain under static and dynamic conditions. The Ag nanoparticles synthesized in 2-propanol were incorporated into the polymer matrix using metal-containing organosol. MVS is based on the interaction of extremely reactive atomic metals formed by evaporation in vacuum at a pressure of 10-2 Pa with organic substances during their co-condensation on the cooled walls of a reaction vessel. The composition, structure, and electronic state of the metal in the materials were characterized by transmission and scanning electron microscopy (TEM, SEM), powder X-ray diffraction (XRD), small-angle X-ray scattering (SAXS) and X-ray photoelectron spectroscopy (XPS). Since antimicrobial activity is largely determined by the surface composition, much attention was paid to studying its properties by XPS, a surface-sensitive method, at a sampling depth about 10 nm. C 1s and O 1s spectra were analyzed self-consistently. XPS C 1s spectra of the original and Ag-containing celluloses showed an increase in the intensity of the C-C/C-H groups in the latter, which are associated with carbon shell surrounding metal in Ag nanoparticles (Ag NPs). The size effect observed in Ag 3d spectra evidenced on a large proportion of silver nanoparticles with a size of less than 3 nm in the near-surface region. Ag NPs in the BC films and spherical beads were mainly in the zerovalent state. BC-based nanocomposites with Ag nanoparticles exhibited antimicrobial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli bacteria and Candida albicans and Aspergillus niger fungi. It was found that AgNPs/SBCB nanocomposites are more active than Ag NPs/BCF samples, especially against Candida albicans and Aspergillus niger fungi. These results increase the possibility of their medical application.
Collapse
Affiliation(s)
- Alexander Vasil'kov
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia
| | - Ivan Butenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia
- G.F. Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Alexander Naumkin
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia
| | - Anastasiia Voronova
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia
| | - Alexandre Golub
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia
| | - Mikhail Buzin
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia
| | - Eleonora Shtykova
- Shubnikov Institute of Crystallography, FSRC "Crystallography and Photonics" RAS, 119333 Moscow, Russia
| | - Vladimir Volkov
- Shubnikov Institute of Crystallography, FSRC "Crystallography and Photonics" RAS, 119333 Moscow, Russia
| | - Vera Sadykova
- G.F. Gause Institute of New Antibiotics, 119021 Moscow, Russia
| |
Collapse
|
4
|
Aziz T, Haq F, Farid A, Kiran M, Faisal S, Ullah A, Ullah N, Bokhari A, Mubashir M, Chuah LF, Show PL. Challenges associated with cellulose composite material: Facet engineering and prospective. ENVIRONMENTAL RESEARCH 2023; 223:115429. [PMID: 36746207 DOI: 10.1016/j.envres.2023.115429] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Cellulose is the most abundant polysaccharide on earth. It has a large number of desirable properties. Its low toxicity makes it more useful for a variety of applications. Nowadays, its composites are used in most engineering fields. Composite consists of a polymer matrix and use as a reinforcing material. By reducing the cost of traditional fibers, it has an increasing demand for environment-friendly purposes. The use of these types of composites is inherent in moisture absorption with hindered natural fibers. This determines the reduction of polymer composite material. By appropriate chemical surface treatment of cellulose composite materials, the effect could be diminished. The most modern and advanced techniques and methods for the preparation of cellulose and polymer composites are discussed here. Cellulosic composites show a reinforcing effect on the polymer matrix as pointed out by mechanical characterization. Researchers tried their hard work to study different ways of converting various agricultural by-products into useful eco-friendly polymer composites for sustainable production. Cellulose plays building blocks, that are critical for polymer products and their engineering applications. The most common method used to prepare composites is in-situ polymerization. This help to increase the yields of cellulosic composites with a significant enhancement in thermal stability and mechanical properties. Recently, cellulose composites used as enhancing the incorporation of inorganic materials in multi-functional properties. Furthermore, we have summarized in this review the potential applications of cellulose composites in different fields like packaging, aerogels, hydrogels, and fibers.
Collapse
Affiliation(s)
- Tariq Aziz
- Westlake University, School of Engineering, Hangzhou, China
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D. I. Khan, 29050, Pakistan.
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D. I. Khan, 29050, Pakistan
| | - Mehwish Kiran
- Department of Horticulture, Faculty of Agriculture, Gomal University, D. I. Khan, 29050, Pakistan
| | - Shah Faisal
- Chemistry Department, University of Science and Technology Bannu, Pakistan
| | - Asmat Ullah
- Zhejiang Provincial Key Laboratory of Cancer, Life Science Institute, Zhejiang University, Hangzhou, 310058, China
| | - Naveed Ullah
- Institute of Chemical Sciences, Gomal University, D. I. Khan, 29050, Pakistan
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Muhammad Mubashir
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
5
|
Basak S, Singhal RS. The potential of supercritical drying as a “green” method for the production of food-grade bioaerogels: A comprehensive critical review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Vasil’kov A, Migulin D, Naumkin A, Volkov I, Butenko I, Golub A, Sadykova V, Muzafarov A. Hybrid Materials with Antimicrobial Properties Based on Hyperbranched Polyaminopropylalkoxysiloxanes Embedded with Ag Nanoparticles. Pharmaceutics 2023; 15:pharmaceutics15030809. [PMID: 36986670 PMCID: PMC10057488 DOI: 10.3390/pharmaceutics15030809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
New hybrid materials based on Ag nanoparticles stabilized by a polyaminopropylalkoxysiloxane hyperbranched polymer matrix were prepared. The Ag nanoparticles were synthesized in 2-propanol by metal vapor synthesis (MVS) and incorporated into the polymer matrix using metal-containing organosol. MVS is based on the interaction of extremely reactive atomic metals formed by evaporation in high vacuum (10−4–10−5 Torr) with organic substances during their co-condensation on the cooled walls of a reaction vessel. Polyaminopropylsiloxanes with hyperbranched molecular architectures were obtained in the process of heterofunctional polycondensation of the corresponding AB2-type monosodiumoxoorganodialkoxysilanes derived from the commercially available aminopropyltrialkoxysilanes. The nanocomposites were characterized using transmission (TEM) and scanning (SEM) electron microscopy, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD) and Fourier-transform infrared spectroscopy (FTIR). TEM images show that Ag nanoparticles stabilized in the polymer matrix have an average size of 5.3 nm. In the Ag-containing composite, the metal nanoparticles have a “core-shell” structure, in which the “core” and “shell” represent the M0 and Mδ+ states, respectively. Nanocomposites based on silver nanoparticles stabilized with amine-containing polyorganosiloxane polymers showed antimicrobial activity against Bacillus subtilis and Escherichia coli.
Collapse
Affiliation(s)
- Alexander Vasil’kov
- A. N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-(915)-416-5011
| | - Dmitry Migulin
- Enikolopov Institute of Synthetic Polymeric Materials, RAS, 117393 Moscow, Russia
| | - Alexander Naumkin
- A. N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119991 Moscow, Russia
| | - Ilya Volkov
- A. N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119991 Moscow, Russia
| | - Ivan Butenko
- A. N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119991 Moscow, Russia
- G. F. Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Alexandre Golub
- A. N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119991 Moscow, Russia
| | - Vera Sadykova
- G. F. Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Aziz Muzafarov
- A. N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119991 Moscow, Russia
- Enikolopov Institute of Synthetic Polymeric Materials, RAS, 117393 Moscow, Russia
| |
Collapse
|
7
|
Ochirov OS, Stel’makh SA, Grigor’eva MN, Okladnikova VO. Study into the hydrolysis of polyhexamethylene guanidine hydrochloride. PROCEEDINGS OF UNIVERSITIES. APPLIED CHEMISTRY AND BIOTECHNOLOGY 2022. [DOI: 10.21285/2227-2925-2022-12-3-356-362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development of new preparations for managing skin lesions is a task requiring a complex research approach. Thus, one promising direction consists in the creation of new bases for wound-healing drugs for external application. Chemical compounds that can be used as such bases include polymeric hydrogels, representing spatially cross-linked macromolecules that swell in a solvent. This property provides an opportunity to load hydrogels with drugs of both synthetic and herbal origin. A search for a gel-forming polymer acting not only as a drug carrier, but also as a healing agent presents a relevant research task. In a previous work, the authors obtained polyhexamethylene guanidine hydrochloride hydrogels by crosslinking terminal amino groups with formaldehyde. The conducted studies of the wound-healing capacity of the obtained hydrogels and compositions on their basis confirmed their comparability with such widely-used agents, as levomecol, bepanthene, etc. In addition, the obtained compositions were found to exhibit their own activity. Therefore, hydrogels based on polyhexamethylene guanidine hydrochloride can be used as a promising platform for drug design. In this work, the destruction products released during hydrolysis of the hydrogel under study were investigated. IR and UV spectroscopy methods were applied to evaluate the concentration of hydrogel destruction products over time. A mechanism of hydrogel destruction yielding the initial polyhexamethylene guanidine hydrochloride and formaldehyde in a gem-diol form is proposed.
Collapse
|
8
|
Rizal S, Yahya EB, Abdul Khalil HPS, Abdullah CK, Marwan M, Ikramullah I, Muksin U. Preparation and Characterization of Nanocellulose/Chitosan Aerogel Scaffolds Using Chemical-Free Approach. Gels 2021; 7:gels7040246. [PMID: 34940306 PMCID: PMC8701007 DOI: 10.3390/gels7040246] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Biopolymer-based aerogels are open three-dimensional porous materials that are characterized by outstanding properties, such as a low density, high porosity and high surface area, in addition to their biocompatibility and non-cytotoxicity. Here we fabricated pure and binary blended aerogels from cellulose nanofibers (CNFs) and chitosan (CS), using a chemical-free approach that consists of high-pressure homogenization and freeze-drying. The prepared aerogels showed a different porosity and density, depending on the material and mixing ratio. The porosity and density of the aerogels ranged from 99.1 to 90.8% and from 0.0081 to 0.141 g/cm3, respectively. Pure CNFs aerogel had the highest porosity and lightest density, but it showed poor mechanical properties and a high water absorption capacity. Mixing CS with CNFs significantly enhance the mechanical properties and reduce its water uptake. The two investigated ratios of aerogel blends had superior mechanical and thermal properties over the single-material aerogels, in addition to reduced water uptake and 2-log antibacterial activity. This green fabrication and chemical-free approach could have great potential in the preparation of biopolymeric scaffolds for different biomedical applications, such as tissue-engineering scaffolds.
Collapse
Affiliation(s)
- Samsul Rizal
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Correspondence: (S.R.); (E.B.Y.); (A.K.H.P.S.)
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Correspondence: (S.R.); (E.B.Y.); (A.K.H.P.S.)
| | - H. P. S. Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Correspondence: (S.R.); (E.B.Y.); (A.K.H.P.S.)
| | - C. K. Abdullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Marwan Marwan
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Ikramullah Ikramullah
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Umar Muksin
- Department of Physics, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| |
Collapse
|