1
|
Jose AD, Chong CHN, Cheah E, Jaiswal J, Wu Z, Thakur SS. Formulation and evaluation of oxygen microbubbles stabilised in a hydrogel to potentiate radiotherapy. Int J Pharm 2025; 674:125443. [PMID: 40064385 DOI: 10.1016/j.ijpharm.2025.125443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Tumour hypoxia poses a significant challenge in cancer treatment. There is mounting evidence that reoxygenating tumours increases their sensitivity to conventional cancer therapies. Oxygenated microbubbles (OMB) show promise for this application but suffer from poor stability and rapid clearance. Embedding OMB in a thermosensitive hydrogel (OMBHG) may prolong tumour oxygenation and improve therapeutic outcomes. OBJECTIVES To formulate and evaluate OMB loaded in a temperature sensitive hydrogel on an in vitro model of tumour hypoxia. METHODS OMB generated from a liposomal precursor were dispersed at various concentrations in a poloxamer hydrogel. OMB size, hydrogel rheology, injectability, oxygen loading/release, and impact on efficacy of radiotherapy against HCT116 colon cancer cells under hypoxia/normoxia were evaluated. RESULTS DSPC:DSPE-PEG2000 (94:6 molar ratio) liposomes dispersed in a poloxamer 407: poloxamer 188 (21:6.5 % w/w) hydrogel generated OMB predominantly sized < 1 µm. OMBHG formulations were deemed injectable (force to inject < 38 N) at 20 °C and gelled before 37 °C and demonstrated both greater oxygen loading and prolonged oxygen release than OMB alone. Cancer cells were significantly less sensitive to radiotherapy under hypoxic conditions. Pre-treatment of the cells with OMB or OMBHG enhanced radiotherapy significantly, reducing clonogenic survival rates in HCT116 cells by 78 % in hypoxic conditions and by 68 % in normoxic conditions (p < 0.0001 in both cases). Notably, this treatment restored the radiotherapy sensitivity of hypoxic cells to the levels seen with normoxic cells. CONCLUSION Reoxygenation with a newly developed OMB hydrogel formulation effectively sensitised HCT116 to radiotherapy in vitro. Ongoing studies are exploring the importance of reoxygenation rate and extent for optimal tumour sensitisation.
Collapse
Affiliation(s)
- Ashok David Jose
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Celine Hui-Ning Chong
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ernest Cheah
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jagdish Jaiswal
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sachin Sunil Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
2
|
Firoz F, Yousef T, Asser Y, Thaer RM, Sammour RMF. Thermo-activated in situ rectal gel preparation for Ibuprofen using eutectic mixture. Eur J Pharm Sci 2024; 200:106843. [PMID: 38950638 DOI: 10.1016/j.ejps.2024.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
This study aimed to develop a thermosensitive in situ gel formulation for rectal delivery of Ibuprofen as an efficient alternative dosage form. Utilizing poloxamer 188, poloxamer 407, and HPMC via cold technique method, a thermosensitive in situ gel was successfully prepared. The concentration of Ibuprofen in the formulations was 1.2 % (w/w). The prepared gels underwent assessment for clarity, gelation temperature, gelation time, gel strength, spread ability, syringe-ability, pH, viscosity, FTIR, and drug content. The selected formulations exhibited a gelation temperature within the range of 30 °C to 36 °C, with consistent amount of drug soluble in the formulations (93 % - 110 %). Mucoadhesive studies, in vitro release tests, ex vivo modeling of drug release, kinetic studies modeling, and histopathology testing were also conducted. The formulation comprising 18 % poloxamer 407, 12 % poloxamer 188, and 1 % sodium chloride (FS15) demonstrated suitable gelation temperature and desirable drug release rate. In vitro drug release tests indicated completion within one hour for both FS10 (20 % P407 & 10 % P188) and FS15 (18 % P407 & 12 % P188), with consistent and predictable release patterns observed through kinetic modeling analysis. Microscopic histopathology examination confirmed the safety of the selected formula, exhibiting no irritation in the mucosal membrane of the sheep. In conclusion, Ibuprofen thermosensitive in situ gel presents a promising and convenient strategy as a rectal carrier and an alternative dosage form to solid suppositories.
Collapse
Affiliation(s)
- Fathima Firoz
- Bpharm graduate, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Tafika Yousef
- Bpharm graduate, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Yosra Asser
- Bpharm graduate, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Reem Mohammed Thaer
- Bpharm graduate, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Rana M F Sammour
- Pharmaceutics Department, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates.
| |
Collapse
|
3
|
Marques AC, Costa PC, Velho S, Amaral MH. Rheological and Injectability Evaluation of Sterilized Poloxamer-407-Based Hydrogels Containing Docetaxel-Loaded Lipid Nanoparticles. Gels 2024; 10:307. [PMID: 38786224 PMCID: PMC11121564 DOI: 10.3390/gels10050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Nanostructured lipid carriers (NLCs) have the potential to increase the bioavailability and reduce the side effects of docetaxel (DTX). However, only a small fraction of nanoparticles given intravenously can reach a solid tumor. In situ-forming gels combined with nanoparticles facilitate local administration and promote drug retention at the tumor site. Injectable hydrogels based on poloxamer 407 are excellent candidates for this hybrid nanoparticle-hydrogel system because of their thermoresponsive behavior and biocompatibility. Therefore, this work aimed to develop injectable poloxamer hydrogels containing NLCs for intratumoral delivery of DTX. To ensure sterility, the obtained hydrogels were autoclaved (121 °C for 15 min) after preparation. Then, the incorporation of NLCs into the poloxamer hydrogels and the impact of steam sterilization on the nanocomposite hydrogels were evaluated concerning sol-gel transition, injectability, and physicochemical stability. All formulations were extruded through the tested syringe-needle systems with acceptable force (2.2-13.4 N) and work (49.5-317.7 N·mm) of injection. Following steam sterilization, injection became easier in most cases, and the physicochemical properties of all hydrogels remained practically unchanged according to the spectroscopical and thermal analysis. The rheological evaluation revealed that the nanocomposite hydrogels were liquid at 25 °C and underwent rapid gelation at 37 °C. However, their sterilized counterparts gelled at 1-2 °C above body temperature, suggesting that the autoclaving conditions employed had rendered these nanocomposite hydrogels unsuitable for local drug delivery.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Almutairy BK, Khafagy ES, Abu Lila AS. Development of Carvedilol Nanoformulation-Loaded Poloxamer-Based In Situ Gel for the Management of Glaucoma. Gels 2023; 9:952. [PMID: 38131938 PMCID: PMC10742441 DOI: 10.3390/gels9120952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The objective of the current study was to fabricate a thermosensitive in situ gelling system for the ocular delivery of carvedilol-loaded spanlastics (CRV-SPLs). In situ gel formulations were prepared using poloxamer analogs by a cold method and was further laden with carvedilol-loaded spanlastics to boost the precorneal retention of the drug. The gelation capacity, rheological characteristics, muco-adhesion force and in vitro release of various in situ gel formulations (CS-ISGs) were studied. The optimized formula (F2) obtained at 22% w/v poloxamer 407 and 5% w/v poloxamer 188 was found to have good gelation capacity at body temperature with acceptable muco-adhesion properties, appropriate viscosity at 25 °C that would ease its ocular application, and relatively higher viscosity at 37 °C that promoted prolonged ocular residence of the formulation post eye instillation and displayed a sustained in vitro drug release pattern. Ex vivo transcorneal penetration studies through excised rabbit cornea revealed that F2 elicited a remarkable (p ˂ 0.05) improvement in CRV apparent permeation coefficient (Papp = 6.39 × 10-6 cm/s) compared to plain carvedilol-loaded in situ gel (CRV-ISG; Papp = 2.67 × 10-6 cm/s). Most importantly, in normal rabbits, the optimized formula (F2) resulted in a sustained intraocular pressure reduction and a significant enhancement in the ocular bioavailability of carvedilol, as manifested by a 2-fold increase in the AUC0-6h of CRV in the aqueous humor, compared to plain CRV-ISG formulation. To sum up, the developed thermosensitive in situ gelling system might represent a plausible carrier for ophthalmic drug delivery for better management of glaucoma.
Collapse
Affiliation(s)
- Bjad K. Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amr Selim Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Medical and Diagnostic Research Center, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
5
|
Wang Y, Yue Y, Jia R, Liu X, Cheng Z, Cheng Y, Xu Y, Xie Z, Xia H. Design and Evaluation of Paeonol-Loaded Liposomes in Thermoreversible Gels for Atopic Dermatitis. Gels 2023; 9:gels9030198. [PMID: 36975647 PMCID: PMC10047988 DOI: 10.3390/gels9030198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Paeonol (PAE) is a hydrophobic drug. In this study, we encapsulated paeonol in a lipid bilayer of liposomes (PAE-L), which delayed drug release and increased drug solubility. When PAE-L was dispersed in gels (PAE-L-G) based on a poloxamer matrix material for local transdermal delivery, we observed amphiphilicity, reversible thermal responsiveness, and micellar self-assembly behavior. These gels can be used for atopic dermatitis (AD), an inflammatory skin disease, to change the surface temperature of the skin. In this study, we prepared PAE-L-G at an appropriate temperature for the treatment of AD. We then assessed the gel’s relevant physicochemical properties, in vitro cumulative drug release, and antioxidant properties. We found that PAE-loaded liposomes could be designed to increase the drug effect of thermoreversible gels. At 32 °C, PAE-L-G could change from solution state to gelatinous state at 31.70 ± 0.42 s, while the viscosity was 136.98 ± 0.78 MPa.S and the free radical scavenging rates on DPPH and H2O2 were 92.24 ± 5.57% and 92.12 ± 2.71%, respectively. Drug release across the extracorporeal dialysis membrane reached 41.76 ± 3.78%. In AD-like mice, PAE-L-G could also relieve skin damage by the 12th day. In summary, PAE-L-G could play an antioxidant role and relieve inflammation caused by oxidative stress in AD.
Collapse
Affiliation(s)
- Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ruoyang Jia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xinyi Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhiqing Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei 230031, China
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (Y.C.); (H.X.); Tel./Fax: +86-13965033210 (H.X.)
| | - Yinxiang Xu
- Zhaoke (Hefei) Pharmaceutical Co., Ltd., Hefei 230088, China
| | - Zili Xie
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Correspondence: (Y.C.); (H.X.); Tel./Fax: +86-13965033210 (H.X.)
| |
Collapse
|