1
|
Logigan CL, Delaite C, Popa M, Băcăiță ES, Tiron CE, Peptu C, Peptu CA. Poly(ethylene glycol) Methyl Ether Acrylate-Grafted Chitosan-Based Micro- and Nanoparticles as a Drug Delivery System for Antibiotics. Polymers (Basel) 2024; 16:144. [PMID: 38201809 PMCID: PMC10781092 DOI: 10.3390/polym16010144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Nanotechnology is the science of creating materials at the nanoscale by using various devices, structures, and systems that are often inspired by nature. Micro- and nanoparticles (MPs, NPs) are examples of such materials that have unique properties and can be used as carriers for delivering drugs for different biomedical applications. Chitosan (CS) is a natural polysaccharide that has been widely studied, but it has a problem with low water solubility at neutral or basic pH, which limits its processability. The goal of this work was to use a chemically modified CS with poly(ethylene glycol) methyl ether acrylate (PEGA) to prepare CS micronic and submicronic particles (MPs/NPs) that can deliver different types of antibiotics, respectively, levofloxacin (LEV) and Ciprofloxacin (CIP). The particle preparation procedure employed a double crosslinking method, ionic followed by a covalent, in a water/oil emulsion. The studied process parameters were the precursor concentration, stirring speeds, and amount of ionic crosslinking agent. MPs/NPs were characterized by FT-IR, SEM, light scattering granulometry, and Zeta potential. MPs/NPs were also tested for their water uptake capacity in acidic and neutral pH conditions, and the results showed that they had a pH-dependent behavior. The MPs/NPs were then used to encapsulate two separate drugs, LEV and CIP, and they showed excellent drug loading and release capacity. The MPs/NPs were also found to be safe for cells and blood, which demonstrated their potential as suitable drug delivery systems for biomedical applications.
Collapse
Affiliation(s)
- Corina-Lenuța Logigan
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (C.-L.L.); (M.P.)
| | - Christelle Delaite
- Laboratory of Photochemistry and Macromolecular Engineering, Institute J.B. Donnet, University of Haute Alsace, 68100 Mulhouse, France;
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (C.-L.L.); (M.P.)
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, Pacurari Street, 11, Iasi 6600, Romania Muzicii Street, No. 2, 700511 Iasi, Romania
- Academy of Romanian Scientists, Ilfov Street, No. 3, Sector 5, 050094 Bucharest, Romania
| | - Elena Simona Băcăiță
- Department of Physics, Faculty of Machine Manufacturing and Industrial Management, “Gheorghe Asachi” Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania;
| | - Crina Elena Tiron
- Regional Institute of Oncology, General Henri Mathias Berthelot Street, 2–4, 700483 Iasi, Romania;
| | - Cristian Peptu
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania;
| | - Cătălina Anișoara Peptu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (C.-L.L.); (M.P.)
| |
Collapse
|
2
|
Nyanhongo GS. Editorial on the Special Issue "Chitosan Functional Hydrogels: Synthesis and Applications". Gels 2023; 9:524. [PMID: 37504403 PMCID: PMC10378970 DOI: 10.3390/gels9070524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Chitin, a polysaccharide composed of β-(1-4)-linked 2-deoxy-2-acetamido-d-glucose units, is found in cell walls of different organisms, including crustaceans, fungi, insects, some algae, microorganisms, and some invertebrate animals, and its deacetylation into chitosan confers it with incredible chemical versatility allowing it to be processed into numerous products [...].
Collapse
Affiliation(s)
- Gibson S Nyanhongo
- Department of Agrobiotechnology, University of Natural Resources and Life Sciences (BOKU), 3430 Tulln an der Donau, Austria
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg 2092, South Africa
| |
Collapse
|
3
|
Mohite P, Shah SR, Singh S, Rajput T, Munde S, Ade N, Prajapati BG, Paliwal H, Mori DD, Dudhrejiya AV. Chitosan and chito-oligosaccharide: a versatile biopolymer with endless grafting possibilities for multifarious applications. Front Bioeng Biotechnol 2023; 11:1190879. [PMID: 37274159 PMCID: PMC10235636 DOI: 10.3389/fbioe.2023.1190879] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Chito-oligosaccharides (COS), derived from chitosan (CH), are attracting increasing attention as drug delivery carriers due to their biocompatibility, biodegradability, and mucoadhesive properties. Grafting, the process of chemically modifying CH/COS by adding side chains, has been used to improve their drug delivery performance by enhancing their stability, targeted delivery, and controlled release. In this review, we aim to provide an in-depth study on the recent advances in the grafting of CH/COS for multifarious applications. Moreover, the various strategies and techniques used for grafting, including chemical modification, enzymatic modification, and physical modification, are elaborated. The properties of grafted CH/COS, such as stability, solubility, and biocompatibility, were reported. Additionally, the review detailed the various applications of grafted CH/COS in drug delivery, including the delivery of small drug molecule, proteins, and RNA interference therapeutics. Furthermore, the effectiveness of grafted CH/COS in improving the pharmacokinetics and pharmacodynamics of drugs was included. Finally, the challenges and limitations associated with the use of grafted CH/COS for drug delivery and outline directions for future research are addressed. The insights provided in this review will be valuable for researchers and drug development professionals interested in the application of grafted CH/COS for multifarious applications.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Sunny R. Shah
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Tanavirsing Rajput
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Nitin Ade
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India
| | - Himanshu Paliwal
- Drug Delivery System Excellence Centre, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Dhaval D. Mori
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| | - Ashvin V. Dudhrejiya
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| |
Collapse
|
4
|
Alavi N, Maghami P, Fani Pakdel A, Rezaei M, Avan A. The advance anticancer role of polymeric core-shell ZnO nanoparticles containing oxaliplatin in colorectal cancer. J Biochem Mol Toxicol 2023; 37:e23325. [PMID: 36843533 DOI: 10.1002/jbt.23325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/10/2022] [Accepted: 02/08/2023] [Indexed: 02/28/2023]
Abstract
We evaluated the activity of core-shell ZnO nanoparticles (ZnO-NPs@polymer shell) containing Oxaliplatin via polymerization through in vitro studies and in vivo mouse models of colorectal cancer. ZnO NPs were synthesized in situ when the polymerization step was completed by co-precipitation. Gadolinium coordinated-ZnONPs@polymer shell (ZnO-Gd NPs@polymer shell) was synthesized by exploiting Gd's oxophilicity (III). The biophysical properties of the NPs were studied using powder X-ray diffraction (PXRD), Fourier transforms infrared spectroscopy, Ultraviolet-visible spectroscopy (UV-Vis), field emission electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy, dynamic light scattering, and z-potential. (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) was used to determine the antiproliferative activity of ZnO-Gd-OXA. Moreover, a xenograft mouse model of colon cancer was exerted to survey its antitumor activity and effect on tumor growth. In the following, the model was also evaluated by histological staining (H-E; Hematoxylin & Eosin and trichrome staining) and gene expression analyses through the application of RT-PCR/ELISA, which included biochemical evaluation (MDA, thiols, SOD, CAT). The formation of ZnO NPs, which contained a crystallite size of 16.8 nm, was confirmed by the outcomes of the PXRD analysis. The Plate-like morphology and presence of Pt were obtained in EDX outcomes. TEM analysis displayed the attained ZnO NPs in a spherical shape and a diameter of 33 ± 8.5 nm, while the hydrodynamic sizes indicated that the particles were highly aggregated. The biological results demonstrated that ZnO-Gd-OXA inhibited tumor growth by inducing reactive oxygen species and inhibiting fibrosis, warranting further research on this novel colorectal cancer treatment agent.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azar Fani Pakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, School of Medicine, University of Medical Sciences, Mashhad, Iran.,Nanotechnology & Catalysis Research Centre, Institute of Postgraduate Studies, University Malaya, Kuala Lumpur, Malaysia
| | - Amir Avan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Trombino S, Sole R, Di Gioia ML, Procopio D, Curcio F, Cassano R. Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis. Molecules 2023; 28:molecules28052107. [PMID: 36903352 PMCID: PMC10004334 DOI: 10.3390/molecules28052107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 03/06/2023] Open
Abstract
The growing demand for drug carriers and green-technology-based tissue engineering materials has enabled the fabrication of different types of micro- and nano-assemblies. Hydrogels are a type of material that have been extensively investigated in recent decades. Their physical and chemical properties, such as hydrophilicity, resemblance to living systems, swelling ability and modifiability, make them suitable to be exploited for many pharmaceutical and bioengineering applications. This review deals with a brief account of green-manufactured hydrogels, their characteristics, preparations, importance in the field of green biomedical technology and their future perspectives. Only hydrogels based on biopolymers, and primarily on polysaccharides, are considered. Particular attention is given to the processes of extracting such biopolymers from natural sources and the various emerging problems for their processing, such as solubility. Hydrogels are catalogued according to the main biopolymer on which they are based and, for each type, the chemical reactions and the processes that enable their assembly are identified. The economic and environmental sustainability of these processes are commented on. The possibility of large-scale processing in the production of the investigated hydrogels are framed in the context of an economy aimed at waste reduction and resource recycling.
Collapse
|
6
|
Li Q, Ma W, Ma H, Shang H, Qiao N, Sun X. Synthesis and Characterization of Temperature‐/pH‐Responsive Hydrogels for Drug Delivery. ChemistrySelect 2023. [DOI: 10.1002/slct.202204270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qi Li
- College of materials science and Engineering North China University of Science and Technology Tangshan 063210 China
| | - Wenhao Ma
- College of materials science and Engineering North China University of Science and Technology Tangshan 063210 China
| | - Hua Ma
- College of Pharmacy North China University of Science and Technology Tangshan 063210 China
| | - Hongzhou Shang
- College of materials science and Engineering North China University of Science and Technology Tangshan 063210 China
| | - Ning Qiao
- College of materials science and Engineering North China University of Science and Technology Tangshan 063210 China
| | - Xiaoran Sun
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| |
Collapse
|