1
|
Pinel G, Berthelot U, Queiroz LS, Santiago LDA, Silva NFN, Petersen HO, Sloth JJ, Altay I, Marie R, Feyissa AH, Casanova F, Doyen A. Influence of the processing on composition, protein structure and techno-functional properties of mealworm protein concentrates produced by isoelectric precipitation and ultrafiltration/diafiltration. Food Chem 2024; 449:139177. [PMID: 38581785 DOI: 10.1016/j.foodchem.2024.139177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Edible insects represent a great alternative protein source but food neophobia remains the main barrier to consumption. However, the incorporation of insects as protein-rich ingredients, such as protein concentrates, could increase acceptance. In this study, two methods, isoelectric precipitation and ultrafiltration-diafiltration, were applied to produce mealworm protein concentrates, which were compared in terms of composition, protein structure and techno-functional properties. The results showed that the protein content of the isoelectric precipitation concentrate was higher than ultrafiltration-diafiltration (80 versus 72%) but ash (1.91 versus 3.82%) and soluble sugar (1.43 versus 8.22%) contents were lower. Moreover, the protein structure was affected by the processing method, where the ultrafiltration-diafiltration concentrate exhibited a higher surface hydrophobicity (493.5 versus 106.78 a.u) and a lower denaturation temperature (161.32 versus 181.44 °C). Finally, the ultrafiltration-diafiltration concentrate exhibited higher solubility (87 versus 41%) and emulsifying properties at pH 7 compared to the concentrate obtained by isoelectric precipitation.
Collapse
Affiliation(s)
- Gwenn Pinel
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark.
| | - Ugo Berthelot
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Lucas Sales Queiroz
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark.
| | - Livia De Almeida Santiago
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Naaman Francisco Nogueira Silva
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; Center of Natural Sciences, Federal University of São Carlos (UFSCar), Buri, 18290-000 São Paulo, Brazil.
| | - Heidi Olander Petersen
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark.
| | - Jens J Sloth
- Research Group for Analytical Food Chemistry, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark.
| | - Ipek Altay
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark.
| | - Rodolphe Marie
- Department of Health Technology, Technical University of Denmark, Ørsted Plads, 2800 Kongens Lyngby, Denmark.
| | - Aberham Hailu Feyissa
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark.
| | - Federico Casanova
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark.
| | - Alain Doyen
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
2
|
Deshwal GK, Akshit F, Altay I, Huppertz T. A Review on the Production and Characteristics of Cheese Powders. Foods 2024; 13:2204. [PMID: 39063288 PMCID: PMC11275502 DOI: 10.3390/foods13142204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Cheese powder is a product resulting from the removal of moisture from cheese. At first, cheese emulsion is prepared by dissolving cheese(s) with water and calcium sequestering salts followed by drying. The desirable characteristics of cheese powder are high solubility, no lumps, storage stability, and imparting a typical cheesy flavor to the final product. Many current studies on cheese powder are focused on reducing calcium-sequestering salts (CSSs) to reduce the sodium content of cheese powder. This review discusses the production processes and physio-chemical properties of cheese emulsions and powders, aiming to enhance current understanding and identifying potential research gaps. Furthermore, strategies for producing cheese powder without CSSs, including pH adjustment, homogenization, and addition of dairy components such as buttermilk powder and sodium caseinate, are elaborated upon. Processing variables such as heating conditions during the preparation of cheese emulsion may vary with the type and age of the cheese used and product formulation. These conditions also effect the characteristics of cheese powders. On the other hand, producing a stable cheese emulsion without CSSs is challenging due to impaired emulsification of fat. The combined use of buttermilk powder and sodium caseinate among various alternatives has shown promising results in producing cheese powder without CSSs. However, future research on replacing CSSs should focus on combining two or more strategies together to produce cheese powder without CSSs. The combination of pH adjustment and dairy ingredients and the use of novel processing technologies with different ingredients are interesting alternatives.
Collapse
Affiliation(s)
- Gaurav Kr Deshwal
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, P61C996 Cork, Ireland;
- Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - F.N.U. Akshit
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57006, USA
| | - Ipek Altay
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Soeltofts Plads 227, 2800 Kongens Lyngby, Denmark;
| | - Thom Huppertz
- Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- FrieslandCampina, Stationsplein 4, 3818 LE Amersfoort, The Netherlands
- School of Food and Nutritional Sciences, University College Cork, T12YN60 Cork, Ireland
| |
Collapse
|
3
|
Mirsalami SM, Mirsalami M, Alihosseini A, Ghodousian A. The distribution of rennet activity between the cheese aging process and whey is not influenced by the association of enzymes with caseins. Heliyon 2024; 10:e32263. [PMID: 38867957 PMCID: PMC11168479 DOI: 10.1016/j.heliyon.2024.e32263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
The division of rennet in cheesemaking is split between the curd and whey, influencing the taste and texture of aged cheeses. Our study aimed to examine how raising the protein concentration in reconstituted skim milk (up to 8.8 %) affects the distribution of calf rennet activity (RA) in rennet curds produced through two methods: renting only and renneting with glucono-δ-lactone (GDL) to achieve slow acidification. The distribution of rennet activity (RA) into curds increased as the concentration of skim milk rose, ranging from 8.6 % to 29.1 % without acidification, and from 6.5 % to 19.4 % when combined with slow acidification. This increase seemed to be related to the retention of moisture and protein. Surprisingly, the concentration of residual RA in the whey (measured in international milk clotting units, IMCU/mL) remained unaffected and remained consistent with the initial IMCU/mL of milk. This suggests that the division of RA between curd and whey is not influenced by the association of enzymes with caseins (CNs). Instead, it is possible that the strength of interactions between CNs themselves plays a significant role. These findings could be valuable for research focused on enhancing the cheese aging process.
Collapse
Affiliation(s)
- Seyed Mehrdad Mirsalami
- Department of Chemical Engineering, Faculty of Engineering, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Mahsa Mirsalami
- Faculty of Engineering Sciences, Raja University, Qazvin, Iran
| | - Afshar Alihosseini
- Department of Chemical Engineering, Faculty of Engineering, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Amin Ghodousian
- Department of Engineering Science, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Pereira RN, Rodrigues R, Avelar Z, Leite AC, Leal R, Pereira RS, Vicente A. Electrical Fields in the Processing of Protein-Based Foods. Foods 2024; 13:577. [PMID: 38397554 PMCID: PMC10887823 DOI: 10.3390/foods13040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Electric field-based technologies offer interesting perspectives which include controlled heat dissipation (via the ohmic heating effect) and the influence of electrical variables (e.g., electroporation). These factors collectively provide an opportunity to modify the functional and technological properties of numerous food proteins, including ones from emergent plant- and microbial-based sources. Currently, numerous scientific studies are underway, contributing to the emerging body of knowledge about the effects on protein properties. In this review, "Electric Field Processing" acknowledges the broader range of technologies that fall under the umbrella of using the direct passage of electrical current in food material, giving particular focus to the ones that are industrially implemented. The structural and biological effects of electric field processing (thermal and non-thermal) on protein fractions from various sources will be addressed. For a more comprehensive contextualization of the significance of these effects, both conventional and alternative protein sources, along with their respective ingredients, will be introduced initially.
Collapse
Affiliation(s)
- Ricardo N. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Rui Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Zita Avelar
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Ana Catarina Leite
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Rita Leal
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Ricardo S. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - António Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|