1
|
González-Sánchez A, Lozano-Aguirre L, Jiménez-Flores G, López-Sámano M, García-de Los Santos A, Cevallos MA, Le Borgne S. Physiology, Heavy Metal Resistance, and Genome Analysis of Two Cupriavidus gilardii Strains Isolated from the Naica Mine (Mexico). Microorganisms 2025; 13:809. [PMID: 40284645 PMCID: PMC12029693 DOI: 10.3390/microorganisms13040809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Here, we report the characterization of two Cupriavidus strains, NOV2-1 and OV2-1, isolated from an iron-oxide deposit in an underground tunnel of the Naica mine in Mexico. This unique biotope, characterized by its high temperature (≈50 °C) and the presence of heavy metals, is no longer available for sampling at this time. The genomes of NOV2-1 and OV2-1 comprised two replicons: a chromosome of 3.58 and 3.53 Mb, respectively, and a chromid of 2.1 Mb in both strains. No plasmids were found. The average nucleotide identity and the core genome phylogeny showed that NOV2-1 and OV2-1 belonged to the Cupriavidus gilardii species. NOV2-1 and OV2-1 grew up to 48 °C, with an optimal temperature of 42 °C. Discrete differences were observed between C. gilardii CCUG38401T, NOV2-1, and OV2-1 in the biochemical tests. NOV2-1 and OV2-1 presented resistance to zinc, lead, copper, cadmium, nickel, and cobalt. Several complete and incomplete gene clusters related to the resistance to these heavy metals (ars, czc, cop 1, sil-cop 2, cup, mmf, and mer) were detected in the genome of these strains. Although further studies are needed to determine the origin and role of the detected gene clusters, it is suggested that the czc system may have been mobilized by horizontal gene transfer. This study expands the extreme biotopes where Cupriavidus strains can be retrieved.
Collapse
Affiliation(s)
- Antonio González-Sánchez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Ciudad de México 05348, Mexico;
| | - Luis Lozano-Aguirre
- Unidad de Análisis Bioinformáticos, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Guadalupe Jiménez-Flores
- Laboratorio Clínico, Área de Microbiología, Hospital Regional Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Puebla 72570, Mexico;
| | - Mariana López-Sámano
- Programa de Ingeniería Genética, Centro de Ciencias Genómicas, Universidad Nacional Autonoma de México, Cuernavaca 62210, Mexico; (M.L.-S.); (A.G.-d.L.S.)
| | - Alejandro García-de Los Santos
- Programa de Ingeniería Genética, Centro de Ciencias Genómicas, Universidad Nacional Autonoma de México, Cuernavaca 62210, Mexico; (M.L.-S.); (A.G.-d.L.S.)
| | - Miguel A. Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Sylvie Le Borgne
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Ciudad de México 05348, Mexico;
| |
Collapse
|
2
|
Fang Q, Pan X. A systematic review of antibiotic resistance driven by metal-based nanoparticles: Mechanisms and a call for risk mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170080. [PMID: 38220012 DOI: 10.1016/j.scitotenv.2024.170080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Elevations in antibiotic resistance genes (ARGs) are due not only to the antibiotic burden, but also to numerous environmental pressures (e.g., pesticides, metal ions, or psychotropic pharmaceuticals), which have led to an international public health emergency. Metal-based nanoparticles (MNPs) poison bacteria while propelling nanoresistance at ambient or sub-lethal concentrations, acting as a wide spectrum germicidal agent. Awareness of MNPs driven antibiotic resistance has created a surge of investigation into the molecule mechanisms of evolving and spreading environmental antibiotic resistome. Co-occurrence of MNPs resistance and antibiotic resistance emerge in environmental pathogens and benign microbes may entail a crucial outcome for human health. In this review we expound on the systematic mechanism of ARGs proliferation under the stress of MNPs, including reactive oxygen species (ROS) induced mutation, horizontal gene transfer (HGT) relevant genes regulation, nano-property, quorum sensing, and biofilm formation and highlighting on the momentous contribution of nanoparticle released ion. As antibiotic resistance pattern alteration is closely knit with the mediate activation of nanoparticle in water, soil, manure, or sludge habitats, we have proposed a virulence and evolution based antibiotic resistance risk assessment strategy for MNP contaminated areas and discussed practicable approaches that call for risk management in critical environmental compartments.
Collapse
Affiliation(s)
- Qunkai Fang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
3
|
Mijnendonckx K, Rogiers T, Giménez Del Rey FJ, Merroun ML, Williamson A, Ali MM, Charlier D, Leys N, Boon N, Van Houdt R. PrsQ 2, a small periplasmic protein involved in increased uranium resistance in the bacterium Cupriavidus metallidurans. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130410. [PMID: 36413896 DOI: 10.1016/j.jhazmat.2022.130410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Uranium contamination is a widespread problem caused by natural and anthropogenic activities. Although microorganisms thrive in uranium-contaminated environments, little is known about the actual molecular mechanisms mediating uranium resistance. Here, we investigated the resistance mechanisms driving the adaptation of Cupriavidus metallidurans NA4 to toxic uranium concentrations. We selected a spontaneous mutant able to grow in the presence of 1 mM uranyl nitrate compared to 250 µM for the parental strain. The increased uranium resistance was acquired via the formation of periplasmic uranium-phosphate precipitates facilitated by the increased expression of a genus-specific small periplasmic protein, PrsQ2, regulated as non-cognate target of the CzcS2-CzcR2 two-component system. This study shows that bacteria can adapt to toxic uranium concentrations and explicates the complete genetic circuit behind the adaptation.
Collapse
Affiliation(s)
- Kristel Mijnendonckx
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| | - Tom Rogiers
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| | - Francisco J Giménez Del Rey
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium; Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Mohamed L Merroun
- Campus Fuentenueva, Department of Microbiology, University of Granada, Granada, Spain.
| | - Adam Williamson
- Center for Microbial Ecology and Technology, UGent, Ghent, Belgium.
| | - Md Muntasir Ali
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| | - Nico Boon
- Center for Microbial Ecology and Technology, UGent, Ghent, Belgium.
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| |
Collapse
|
4
|
Turco F, Garavaglia M, Van Houdt R, Hill P, Rawson FJ, Kovacs K. Synthetic Biology Toolbox, Including a Single-Plasmid CRISPR-Cas9 System to Biologically Engineer the Electrogenic, Metal-Resistant Bacterium Cupriavidus metallidurans CH34. ACS Synth Biol 2022; 11:3617-3628. [PMID: 36278822 PMCID: PMC9680026 DOI: 10.1021/acssynbio.2c00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cupriavidus metallidurans CH34 exhibits extraordinary metabolic versatility, including chemolithoautotrophic growth; degradation of BTEX (benzene, toluene, ethylbenzene, xylene); high resistance to numerous metals; biomineralization of gold, platinum, silver, and uranium; and accumulation of polyhydroxybutyrate (PHB). These qualities make it a valuable host for biotechnological applications such as bioremediation, bioprocessing, and the generation of bioelectricity in microbial fuel cells (MFCs). However, the lack of genetic tools for strain development and studying its fundamental physiology represents a bottleneck to boosting its commercial applications. In this study, inducible and constitutive promoter libraries were built and characterized, providing the first comprehensive list of biological parts that can be used to regulate protein expression and optimize the CRISPR-Cas9 genome editing tools for this host. A single-plasmid CRISPR-Cas9 system that can be delivered by both conjugation and electroporation was developed, and its efficiency was demonstrated by successfully targeting the pyrE locus. The CRISPR-Cas9 system was next used to target candidate genes encoding type IV pili, hypothesized by us to be involved in extracellular electron transfer (EET) in this organism. Single and double deletion strains (ΔpilA, ΔpilE, and ΔpilAE) were successfully generated. Additionally, the CRISPR-Cas9 tool was validated for constructing genomic insertions (ΔpilAE::gfp and ΔpilAE::λPrgfp). Finally, as type IV pili are believed to play an important role in extracellular electron transfer to solid surfaces, C. metallidurans CH34 ΔpilAE was further studied by means of cyclic voltammetry using disposable screen-printed carbon electrodes. Under these conditions, we demonstrated that C. metallidurans CH34 could generate extracellular currents; however, no difference in the intensity of the current peaks was found in the ΔpilAE double deletion strain when compared to the wild type. This finding suggests that the deleted type IV pili candidate genes are not involved in extracellular electron transfer under these conditions. Nevertheless, these experiments revealed the presence of different redox centers likely to be involved in both mediated electron transfer (MET) and direct electron transfer (DET), the first interpretation of extracellular electron transfer mechanisms in C. metallidurans CH34.
Collapse
Affiliation(s)
- Federico Turco
- School of Pharmacy,
Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Marco Garavaglia
- BBSRC/EPSRC Synthetic Biology Research
Centre, School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Phil Hill
- School
of Biosciences, The University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Frankie J. Rawson
- Bioelectronics Laboratory, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Katalin Kovacs
- Division of Molecular Therapeutics and Formulations,
School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom,
| |
Collapse
|
5
|
Rogiers T, Merroun ML, Williamson A, Leys N, Houdt RV, Boon N, Mijnendonckx K. Cupriavidus metallidurans NA4 actively forms polyhydroxybutyrate-associated uranium-phosphate precipitates. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126737. [PMID: 34388922 DOI: 10.1016/j.jhazmat.2021.126737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Cupriavidus metallidurans is a model bacterium to study molecular metal resistance mechanisms and its use for the bioremediation of several metals has been shown. However, its mechanisms for radionuclide resistance are unexplored. We investigated the interaction with uranium and associated cellular response to uranium for Cupriavidus metallidurans NA4. Strain NA4 actively captured 98 ± 1% of the uranium in its biomass after growing 24 h in the presence of 100 µM uranyl nitrate. TEM HAADF-EDX microscopy confirmed intracellular uranium-phosphate precipitates that were mainly associated with polyhydroxybutyrate. Furthermore, whole transcriptome sequencing indicated a complex transcriptional response with upregulation of genes encoding general stress-related proteins and several genes involved in metal resistance. More in particular, gene clusters known to be involved in copper and silver resistance were differentially expressed. This study provides further insights into bacterial interactions with and their response to uranium. Our results could be promising for uranium bioremediation purposes with the multi-metal resistant bacterium C. metallidurans NA4.
Collapse
Affiliation(s)
- Tom Rogiers
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium; Center for Microbial Ecology and Technology (CMET), UGent, Ghent, Belgium.
| | | | - Adam Williamson
- Center for Microbial Ecology and Technology (CMET), UGent, Ghent, Belgium.
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), UGent, Ghent, Belgium.
| | - Kristel Mijnendonckx
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| |
Collapse
|
6
|
Turner RJ, Huang LN, Viti C, Mengoni A. Metal-Resistance in Bacteria: Why Care? Genes (Basel) 2020; 11:E1470. [PMID: 33302493 PMCID: PMC7764034 DOI: 10.3390/genes11121470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Heavy metal resistance is more than the tolerance one has towards a particular music genera [...].
Collapse
Affiliation(s)
- Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Carlo Viti
- Laboratorio Genexpress, Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, 50144 Florence, Italy;
| | - Alessio Mengoni
- Laboratorio di Genetica Microbica, Dipartimento di Biologia, Università di Firenze, 50019 Florence, Italy
| |
Collapse
|
7
|
Ali MM, Provoost A, Mijnendonckx K, Van Houdt R, Charlier D. DNA-Binding and Transcription Activation by Unphosphorylated Response Regulator AgrR From Cupriavidus metallidurans Involved in Silver Resistance. Front Microbiol 2020; 11:1635. [PMID: 32765465 PMCID: PMC7380067 DOI: 10.3389/fmicb.2020.01635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
Even though silver and silver nanoparticles at low concentrations are considered safe for human health, their steadily increasing use and associated release in nature is not without risk since it may result in the selection of silver-resistant microorganisms, thus impeding the utilization of silver as antimicrobial agent. Furthermore, increased resistance to metals may be accompanied by increased antibiotic resistance. Inactivation of the histidine kinase and concomitant upregulation of the cognate response regulator (RR) of the AgrRS two-component system was previously shown to play an important role in the increased silver resistance of laboratory adapted mutants of Cupriavidus metallidurans. However, binding of AgrR, a member of the OmpR/PhoP family of RRs with a conserved phosphoreceiver aspartate residue, to potential target promoters has never been demonstrated. Here we identify differentially expressed genes in the silver-resistant mutant NA4S in non-selective conditions by RNA-seq and demonstrate sequence-specific binding of AgrR to six selected promoter regions of upregulated genes and divergent operons. We delimit binding sites by DNase I and in gel copper-phenanthroline footprinting of AgrR-DNA complexes, and establish a high resolution base-specific contact map of AgrR-DNA interactions using premodification binding interference techniques. We identified a 16-bp core AgrR binding site (AgrR box) arranged as an imperfect inverted repeat of 6 bp (ATTACA) separated by 4 bp variable in sequence (6-4-6). AgrR interacts with two major groove segments and the intervening minor groove, all aligned on one face of the helix. Furthermore, an additional in phase imperfect direct repeat of the half-site may be observed slightly up and/or downstream of the inverted repeat at some operators. Mutant studies indicated that both inverted and direct repeats contribute to AgrR binding in vitro and AgrR-mediated activation in vivo. From the position of the AgrR box it appears that AgrR may act as a Type II activator for most investigated promoters, including positive autoregulation. Furthermore, we show in vitro binding and in vivo activation with dephosphomimetic AgrR mutant D51A, indicating that unphosphorylated AgrR is the active form of the RR in mutant NA4S.
Collapse
Affiliation(s)
- Md Muntasir Ali
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Ann Provoost
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Kristel Mijnendonckx
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
8
|
Mazhar SH, Herzberg M, Ben Fekih I, Zhang C, Bello SK, Li YP, Su J, Xu J, Feng R, Zhou S, Rensing C. Comparative Insights Into the Complete Genome Sequence of Highly Metal Resistant Cupriavidus metallidurans Strain BS1 Isolated From a Gold-Copper Mine. Front Microbiol 2020; 11:47. [PMID: 32117100 PMCID: PMC7019866 DOI: 10.3389/fmicb.2020.00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
The highly heavy metal resistant strain Cupriavidus metallidurans BS1 was isolated from the Zijin gold–copper mine in China. This was of particular interest since the extensively studied, closely related strain, C. metallidurans CH34 was shown to not be only highly heavy metal resistant but also able to reduce metal complexes and biomineralizing them into metallic nanoparticles including gold nanoparticles. After isolation, C. metallidurans BS1 was characterized and complete genome sequenced using PacBio and compared to CH34. Many heavy metal resistance determinants were identified and shown to have wide-ranging similarities to those of CH34. However, both BS1 and CH34 displayed extensive genome plasticity, probably responsible for significant differences between those strains. BS1 was shown to contain three prophages, not present in CH34, that appear intact and might be responsible for shifting major heavy metal resistance determinants from plasmid to chromid (CHR2) in C. metallidurans BS1. Surprisingly, the single plasmid – pBS1 (364.4 kbp) of BS1 contains only a single heavy metal resistance determinant, the czc determinant representing RND-type efflux system conferring resistance to cobalt, zinc and cadmium, shown here to be highly similar to that determinant located on pMOL30 in C. metallidurans CH34. However, in BS1 another homologous czc determinant was identified on the chromid, most similar to the czc determinant from pMOL30 in CH34. Other heavy metal resistance determinants such as cnr and chr determinants, located on megaplasmid pMOL28 in CH34, were shown to be adjacent to the czc determinant on chromid (CHR2) in BS1. Additionally, other heavy metal resistance determinants such as pbr, cop, sil, and ars were located on the chromid (CHR2) and not on pBS1 in BS1. A diverse range of genomic rearrangements occurred in this strain, isolated from a habitat of constant exposure to high concentrations of copper, gold and other heavy metals. In contrast, the megaplasmid in BS1 contains mostly genes encoding unknown functions, thus might be more of an evolutionary playground where useful genes could be acquired by horizontal gene transfer and possibly reshuffled to help C. metallidurans BS1 withstand the intense pressure of extreme concentrations of heavy metals in its environment.
Collapse
Affiliation(s)
- Sohaib H Mazhar
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenkang Zhang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Suleiman Kehinde Bello
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junming Su
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junqiang Xu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Mijnendonckx K, Ali MM, Provoost A, Janssen P, Mergeay M, Leys N, Charlier D, Monsieurs P, Van Houdt R. Spontaneous mutation in the AgrRS two-component regulatory system ofCupriavidus metalliduransresults in enhanced silver resistance. Metallomics 2019; 11:1912-1924. [DOI: 10.1039/c9mt00123a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cupriavidus metalliduransis able to adapt to toxic silver concentrations and previously uncharacterized periplasmic proteins played a crucial role in this adaptation process.
Collapse
Affiliation(s)
| | - Md Muntasir Ali
- Unit of Microbiology
- Belgian Nuclear Research Centre SCK·CEN
- 2400 Mol
- Belgium
- Research Group of Microbiology
| | - Ann Provoost
- Unit of Microbiology
- Belgian Nuclear Research Centre SCK·CEN
- 2400 Mol
- Belgium
| | - Paul Janssen
- Unit of Microbiology
- Belgian Nuclear Research Centre SCK·CEN
- 2400 Mol
- Belgium
| | - Max Mergeay
- Unit of Microbiology
- Belgian Nuclear Research Centre SCK·CEN
- 2400 Mol
- Belgium
| | - Natalie Leys
- Unit of Microbiology
- Belgian Nuclear Research Centre SCK·CEN
- 2400 Mol
- Belgium
| | - Daniël Charlier
- Research Group of Microbiology
- Department of Bioengineering Sciences
- Vrije Universiteit Brussel
- B-1050 Brussel
- Belgium
| | - Pieter Monsieurs
- Unit of Microbiology
- Belgian Nuclear Research Centre SCK·CEN
- 2400 Mol
- Belgium
| | - Rob Van Houdt
- Unit of Microbiology
- Belgian Nuclear Research Centre SCK·CEN
- 2400 Mol
- Belgium
| |
Collapse
|