1
|
Maksimov IV, Shein MY, Burkhanova GF. RNA Interference in Plant Protection from Fungal and Oomycete Infection. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
2
|
Abstract
Adaptive antiviral immunity in plants is an RNA-based mechanism in which small RNAs derived from both strands of the viral RNA are guides for an Argonaute (AGO) nuclease. The primed AGO specifically targets and silences the viral RNA. In plants this system has diversified to involve mobile small interfering RNAs (siRNAs), an amplification system involving secondary siRNAs and targeting mechanisms involving DNA methylation. Most, if not all, plant viruses encode multifunctional proteins that are suppressors of RNA silencing that may also influence the innate immune system and fine-tune the virus-host interaction. Animal viruses similarly trigger RNA silencing, although it may be masked in differentiated cells by the interferon system and by the action of the virus-encoded suppressor proteins. There is huge potential for RNA silencing to combat viral disease in crops, farm animals, and people, although there are complications associated with the various strategies for siRNA delivery including transgenesis. Alternative approaches could include using breeding or small molecule treatment to enhance the inherent antiviral capacity of infected cells.
Collapse
Affiliation(s)
- David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
3
|
Rao S, Balyan S, Bansal C, Mathur S. An Integrated Bioinformatics and Functional Approach for miRNA Validation. Methods Mol Biol 2022; 2408:253-281. [PMID: 35325428 DOI: 10.1007/978-1-0716-1875-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) are small (20-24 nucleotides) non-coding ribo-regulatory molecules with significant roles in regulating target mRNA and long non-coding RNAs at transcriptional and post-transcriptional levels. Rapid advancement in the small RNA sequencing methods with integration of degradome sequencing has accelerated the understanding of miRNA-mediated regulatory hubs in plants and yielded extensive annotation of miRNAs and corresponding targets. However, it is becoming clear that large numbers of such annotations are questionable. Therefore, it is imperative to adopt reliable and strict bioinformatics pipelines for miRNA identification. Furthermore, sensitive methods are needed for validation and functional characterization of miRNA and its target(s). In this chapter, we have provided a comprehensive and streamlined methodology for miRNA identification and its functional validation in plants. This includes a combination of various in silico and experimental methodologies. To identify miRNA compendium from large-scale Next-Generation Sequencing (NGS) small RNA datasets, the miR-PREFeR (miRNA PREdiction From small RNA-Seq data) bioinformatics tool has been described. Also, a homology-based search protocol for finding members of a specific miRNA family has been discussed. The chapter also includes techniques to ascertain miRNA:target pair specificity using in silico target prediction from degradome NGS libraries using CleaveLand pipeline, miRNA:target validation by in planta transient assays, 5' RLM-RACE and expression analysis as well as functional techniques like miRNA overexpression, short tandem target mimic and resistant target approaches. The proposed strategy offers a reliable and sensitive way for miRNA:target identification and validation. Additionally, we strongly promulgate the use of multiple methodologies to validate a miRNA as well as its target.
Collapse
Affiliation(s)
- Sombir Rao
- National Institute of Plant Genome Research, New Delhi, India
| | - Sonia Balyan
- National Institute of Plant Genome Research, New Delhi, India
| | - Chandni Bansal
- National Institute of Plant Genome Research, New Delhi, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
4
|
Zhu Y, Li G, Singh J, Khan A, Fazio G, Saltzgiver M, Xia R. Laccase Directed Lignification Is One of the Major Processes Associated With the Defense Response Against Pythium ultimum Infection in Apple Roots. FRONTIERS IN PLANT SCIENCE 2021; 12:629776. [PMID: 34557205 PMCID: PMC8453155 DOI: 10.3389/fpls.2021.629776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Apple replant disease (ARD), incited by a pathogen complex including Pythium ultimum, causes stunted growth or death of newly planted trees at replant sites. Development and deployment of resistant or tolerant rootstocks offers a cost-effective, ecologically friendly, and durable approach for ARD management. Maximized exploitation of natural resistance requires integrated efforts to identify key regulatory mechanisms underlying resistance traits in apple. In this study, miRNA profiling and degradome sequencing identified major miRNA pathways and candidate genes using six apple rootstock genotypes with contrasting phenotypes to P. ultimum infection. The comprehensive RNA-seq dataset offered an expansive view of post-transcriptional regulation of apple root defense activation in response to infection from P. ultimum. Several pairs of miRNA families and their corresponding targets were identified for their roles in defense response in apple roots, including miR397-laccase, miR398-superoxide dismutase, miR10986-polyphenol oxidase, miR482-resistance genes, and miR160-auxin response factor. Of these families, the genotype-specific expression patterns of miR397 indicated its fundamental role in developing defense response patterns to P. ultimum infection. Combined with other identified copper proteins, the importance of cellular fortification, such as lignification of root tissues by the action of laccase, may critically contribute to genotype-specific resistance traits. Our findings suggest that quick and enhanced lignification of apple roots may significantly impede pathogen penetration and minimize the disruption of effective defense activation in roots of resistant genotypes. The identified target miRNA species and target genes consist of a valuable resource for subsequent functional analysis of their roles during interaction between apple roots and P. ultimum.
Collapse
Affiliation(s)
- Yanmin Zhu
- Tree Fruit Research Laboratory, USDA-ARS, Wenatchee, WA, United States
| | - Guanliang Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jugpreet Singh
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, United States
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, United States
| | - Gennaro Fazio
- Plant Genetic Resources Unit, USDA-ARS, Geneva, NY, United States
| | - Melody Saltzgiver
- Tree Fruit Research Laboratory, USDA-ARS, Wenatchee, WA, United States
| | - Rui Xia
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Song L, Fang Y, Chen L, Wang J, Chen X. Role of non-coding RNAs in plant immunity. PLANT COMMUNICATIONS 2021; 2:100180. [PMID: 34027394 PMCID: PMC8132121 DOI: 10.1016/j.xplc.2021.100180] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Crops are exposed to attacks by various pathogens that cause substantial yield losses and severely threaten food security. To cope with pathogenic infection, crops have elaborated strategies to enhance resistance against pathogens. In addition to the role of protein-coding genes as key regulators in plant immunity, accumulating evidence has demonstrated the importance of non-coding RNAs (ncRNAs) in the plant immune response. Here, we summarize the roles and molecular mechanisms of endogenous ncRNAs, especially microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in plant immunity. We discuss the coordination between miRNAs and small interfering RNAs (siRNAs), between lncRNAs and miRNAs or siRNAs, and between circRNAs and miRNAs in the regulation of plant immune responses. We also address the role of cross-kingdom mobile small RNAs in plant-pathogen interactions. These insights improve our understanding of the mechanisms by which ncRNAs regulate plant immunity and can promote the development of better approaches for breeding disease-resistant crops.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Yu Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Lin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
- Corresponding author
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
- Corresponding author
| |
Collapse
|
6
|
Phospholipases C and D and Their Role in Biotic and Abiotic Stresses. PLANTS 2021; 10:plants10050921. [PMID: 34064485 PMCID: PMC8148002 DOI: 10.3390/plants10050921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/03/2023]
Abstract
Plants, as sessile organisms, have adapted a fine sensing system to monitor environmental changes, therefore allowing the regulation of their responses. As the interaction between plants and environmental changes begins at the surface, these changes are detected by components in the plasma membrane, where a molecule receptor generates a lipid signaling cascade via enzymes, such as phospholipases (PLs). Phospholipids are the key structural components of plasma membranes and signaling cascades. They exist in a wide range of species and in different proportions, with conversion processes that involve hydrophilic enzymes, such as phospholipase-C (PLC), phospholipase-D (PLD), and phospholipase-A (PLA). Hence, it is suggested that PLC and PLD are highly conserved, compared to their homologous genes, and have formed clusters during their adaptive history. Additionally, they generate responses to different functions in accordance with their protein structure, which should be reflected in specific signal transduction responses to environmental stress conditions, including innate immune responses. This review summarizes the phospholipid systems associated with signaling pathways and the innate immune response.
Collapse
|
7
|
Azaman SNA, Satharasinghe DA, Tan SW, Nagao N, Yusoff FM, Yeap SK. Identification and Analysis of microRNAs in Chlorella sorokiniana Using High-Throughput Sequencing. Genes (Basel) 2020; 11:genes11101131. [PMID: 32992970 PMCID: PMC7599482 DOI: 10.3390/genes11101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Chlorella is a popular microalga with robust physiological and biochemical characteristics, which can be cultured under various conditions. The exploration of the small RNA content of Chlorella could improve strategies for the enhancement of metabolite production from this microalga. In this study, stress was introduced to the Chlorella sorokiniana culture to produce high-value metabolites such as carotenoids and phenolic content. The small RNA transcriptome of C. sorokiniana was sequenced, focusing on microRNA (miRNA) content. From the analysis, 98 miRNAs were identified in cultures subjected to normal and stress conditions. The functional analysis result showed that the miRNA targets found were most often involved in the biosynthesis of secondary metabolites, followed by protein metabolism, cell cycle, and porphyrin and chlorophyll metabolism. Furthermore, the biosynthesis of secondary metabolites such as carotenoids, terpenoids, and lipids was found mostly in stress conditions. These results may help to improve our understanding of regulatory mechanisms of miRNA in the biological and metabolic process of Chlorella species. It is important and timely to determine the true potential of this microalga species and to support the potential for genetic engineering of microalgae as they receive increasing focus for their development as an alternative source of biofuel, food, and health supplements.
Collapse
Affiliation(s)
- Siti Nor Ani Azaman
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Dilan Amila Satharasinghe
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Sheau Wei Tan
- Laboratory of Vaccine and Biomolecules (VacBio), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Norio Nagao
- 102 Naname-go, Shinkamigoto-cho, Minami Matsuura-gun, Nagasaki 857-4214, Japan;
| | - Fatimah M. Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, 43900 Selangor, Malaysia
- Correspondence:
| |
Collapse
|
8
|
Inoculation of maize seeds with Pseudomonas putida leads to enhanced seedling growth in combination with modified regulation of miRNAs and antioxidant enzymes. Symbiosis 2020. [DOI: 10.1007/s13199-020-00703-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Vincent D, Rafiqi M, Job D. The Multiple Facets of Plant-Fungal Interactions Revealed Through Plant and Fungal Secretomics. FRONTIERS IN PLANT SCIENCE 2020; 10:1626. [PMID: 31969889 PMCID: PMC6960344 DOI: 10.3389/fpls.2019.01626] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/19/2019] [Indexed: 05/14/2023]
Abstract
The plant secretome is usually considered in the frame of proteomics, aiming at characterizing extracellular proteins, their biological roles and the mechanisms accounting for their secretion in the extracellular space. In this review, we aim to highlight recent results pertaining to secretion through the conventional and unconventional protein secretion pathways notably those involving plant exosomes or extracellular vesicles. Furthermore, plants are well known to actively secrete a large array of different molecules from polymers (e.g. extracellular RNA and DNA) to small compounds (e.g. ATP, phytochemicals, secondary metabolites, phytohormones). All of these play pivotal roles in plant-fungi (or oomycetes) interactions, both for beneficial (mycorrhizal fungi) and deleterious outcomes (pathogens) for the plant. For instance, recent work reveals that such secretion of small molecules by roots is of paramount importance to sculpt the rhizospheric microbiota. Our aim in this review is to extend the definition of the plant and fungal secretomes to a broader sense to better understand the functioning of the plant/microorganisms holobiont. Fundamental perspectives will be brought to light along with the novel tools that should support establishing an environment-friendly and sustainable agriculture.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Maryam Rafiqi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Dominique Job
- CNRS/Université Claude Bernard Lyon 1/Institut National des Sciences Appliquées/Bayer CropScience Joint Laboratory (UMR 5240), Bayer CropScience, Lyon, France
| |
Collapse
|