1
|
García-Romero I, de Dios R, Reyes-Ramírez F. An improved genome editing system for Sphingomonadaceae. Access Microbiol 2024; 6:000755.v3. [PMID: 38868378 PMCID: PMC11165598 DOI: 10.1099/acmi.0.000755.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
The sphingomonads encompass a diverse group of bacteria within the family Sphingomonadaceae, with the presence of sphingolipids on their cell surface instead of lipopolysaccharide as their main common feature. They are particularly interesting for bioremediation purposes due to their ability to degrade or metabolise a variety of recalcitrant organic pollutants. However, research and development on their full bioremediation potential has been hampered because of the limited number of tools available to investigate and modify their genome. Here, we present a markerless genome editing method for Sphingopyxis granuli TFA, which can be further optimised for other sphingomonads. This procedure is based on a double recombination triggered by a DNA double-strand break in the chromosome. The strength of this protocol lies in forcing the second recombination rather than favouring it by pressing a counterselection marker, thus avoiding laborious restreaking or passaging screenings. Additionally, we introduce a modification with respect to the original protocol to increase the efficiency of the screening after the first recombination event. We show this procedure step by step and compare our modified method with respect to the original one by deleting ecfG2, the master regulator of the general stress response in S. granuli TFA. This adds to the genetic tool repertoire that can be applied to sphingomonads and stands as an efficient option for fast genome editing of this bacterial group.
Collapse
Affiliation(s)
- Inmaculada García-Romero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Sevilla, Spain
| | - Rubén de Dios
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences,, Brunel University London, Uxbridge, UK
| | - Francisca Reyes-Ramírez
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Sevilla, Spain
| |
Collapse
|
2
|
Baugh AC, Momany C, Neidle EL. Versatility and Complexity: Common and Uncommon Facets of LysR-Type Transcriptional Regulators. Annu Rev Microbiol 2023; 77:317-339. [PMID: 37285554 DOI: 10.1146/annurev-micro-050323-040543] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
LysR-type transcriptional regulators (LTTRs) form one of the largest families of bacterial regulators. They are widely distributed and contribute to all aspects of metabolism and physiology. Most are homotetramers, with each subunit composed of an N-terminal DNA-binding domain followed by a long helix connecting to an effector-binding domain. LTTRs typically bind DNA in the presence or absence of a small-molecule ligand (effector). In response to cellular signals, conformational changes alter DNA interactions, contact with RNA polymerase, and sometimes contact with other proteins. Many are dual-function repressor-activators, although different modes of regulation may occur at multiple promoters. This review presents an update on the molecular basis of regulation, the complexity of regulatory schemes, and applications in biotechnology and medicine. The abundance of LTTRs reflects their versatility and importance. While a single regulatory model cannot describe all family members, a comparison of similarities and differences provides a framework for future study.
Collapse
Affiliation(s)
- Alyssa C Baugh
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| | - Cory Momany
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| |
Collapse
|
3
|
de Dios R, Santero E, Reyes-Ramírez F. The functional differences between paralogous regulators define the control of the General Stress Response in Sphingopyxis granuli TFA. Environ Microbiol 2022; 24:1918-1931. [PMID: 35049124 PMCID: PMC9303464 DOI: 10.1111/1462-2920.15907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
Sphingopyxis granuli TFA is a contaminant degrading alphaproteobacterium that responds to adverse conditions by inducing the general stress response (GSR), an adaptive response that controls the transcription of a variety of genes to overcome adverse conditions. The core GSR regulators (the response regulator PhyR, the anti‐σ factor NepR and the σ factor EcfG) are duplicated in TFA, being PhyR1 and PhyR2, NepR1 and NepR2 and EcfG1 and EcfG2. Based on multiple genetic, phenotypical and biochemical evidences including in vitro transcription assays, we have assigned distinct functional features to each paralogue and assessed their contribution to the GSR regulation, dictating its timing and the intensity. We show that different stress signals are differentially integrated into the GSR by PhyR1 and PhyR2, therefore producing different levels of GSR activation. We demonstrate in vitro that both NepR1 and NepR2 bind EcfG1 and EcfG2, although NepR1 produces a more stable interaction than NepR2. Conversely, NepR2 interacts with phosphorylated PhyR1 and PhyR2 more efficiently than NepR1. We propose an integrative model where NepR2 would play a dual negative role: it would directly inhibit the σ factors upon activation of the GSR and it would modulate the GSR activity indirectly by titrating the PhyR regulators.
Collapse
Affiliation(s)
- Rubén de Dios
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Francisca Reyes-Ramírez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| |
Collapse
|
4
|
Pérez-Pantoja D, Nikel PI, Chavarría M, de Lorenzo V. Transcriptional control of 2,4-dinitrotoluene degradation in Burkholderia sp. R34 bears a regulatory patch that eases pathway evolution. Environ Microbiol 2021; 23:2522-2531. [PMID: 33734558 DOI: 10.1111/1462-2920.15472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 03/16/2021] [Indexed: 11/26/2022]
Abstract
The dnt pathway of Burkholderia sp. R34 is in the midst of an evolutionary journey from its ancestral, natural substrate (naphthalene) towards a new xenobiotic one [2,4-dinitrotoluene (DNT)]. The gene cluster encoding the leading multicomponent ring dioxygenase (DntA) has activity on the old and the new substrate, but it is induced by neither. Instead, the transcriptional factor encoded by the adjacent gene (dntR) activates expression of the dnt cluster upon addition of salicylate, one degradation intermediate of the ancestral naphthalene route but not any longer a substrate/product of the evolved DntA enzyme. Fluorescence of cells bearing dntA-gfp fusions revealed that induction of the dnt genes by salicylate was enhanced upon exposure to bona fide DntA substrates, i.e., naphthalene or DNT. Such amplification was dependent on effective dioxygenation of these pathway-specific head compounds, which thereby fostered expression of the cognate catabolic operon. The phenomenon seems to happen not through direct binding to a cognate transcriptional factor but through the interplay of a non-specific regulator with a substrate-specific enzyme. This regulatory scenario may ease transition of complete catabolic operons (i.e. enzymes plus regulatory devices) from one substrate to another without loss of fitness during the evolutionary roadmap between two optimal specificities.
Collapse
Affiliation(s)
- Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, 8940577, Chile
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - Max Chavarría
- Escuela de Química and CIPRONA, Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| |
Collapse
|
5
|
Sharma M, Khurana H, Singh DN, Negi RK. The genus Sphingopyxis: Systematics, ecology, and bioremediation potential - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111744. [PMID: 33280938 DOI: 10.1016/j.jenvman.2020.111744] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The genus Sphingopyxis was first reported in the year 2001. Phylogenetically, Sphingopyxis is well delineated from other genera Sphingobium, Sphingomonas and Novosphingobium of sphingomonads group, family Sphingomonadaceae of Proteobacteria. To date (at the time of writing), the genus Sphingopyxis comprises of twenty validly published species available in List of Prokaryotic Names with Standing in Nomenclature. Sphingopyxis spp. have been isolated from diverse niches including, agricultural soil, marine and fresh water, caves, activated sludge, thermal spring, oil and pesticide contaminated soil, and heavy metal contaminated sites. Sphingopyxis species have drawn considerable attention not only for their ability to survive under extreme environments, but also for their potential to degrade number of xenobiotics and other environmental contaminants that impose serious threat to human health. At present, genome sequence of both cultivable and non-cultivable strains (metagenome assembled genome) are available in the public databases (NCBI) and genome wide studies confirms the presence of mobile genetic elements and plethora of degradation genes and pathways making them a potential candidate for bioremediation. Beside genome wide predictions there are number of experimental evidences confirm the degradation potential of bacteria belonging to genus Sphingopyxis and also the production of different secondary metabolites that help them interact and survive in their ecological niches. This review provides detailed information on ecology, general characteristic and the significant implications of Sphingopyxis species in environmental management along with the bio-synthetic potential.
Collapse
Affiliation(s)
- Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi-110007, India
| | - Himani Khurana
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi-110007, India
| | - Durgesh Narain Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi-110007, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi-110007, India.
| |
Collapse
|
6
|
Identification of two fnr genes and characterisation of their role in the anaerobic switch in Sphingopyxis granuli strain TFA. Sci Rep 2020; 10:21019. [PMID: 33273546 PMCID: PMC7713065 DOI: 10.1038/s41598-020-77927-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
Sphingopyxis granuli strain TFA is able to grow on the organic solvent tetralin as the only carbon and energy source. The aerobic catabolic pathway for tetralin, the genes involved and their regulation have been fully characterised. Unlike most of the bacteria belonging to the sphingomonads group, this strain is able to grow in anoxic conditions by respiring nitrate, though not nitrite, as the alternative electron acceptor. In this work, two fnr-like genes, fnrN and fixK, have been identified in strain TFA. Both genes are functional in E. coli and Sphingopyxis granuli although fixK, whose expression is apparently activated by FnrN, seems to be much less effective than fnrN in supporting anaerobic growth. Global transcriptomic analysis of a ΔfnrN ΔfixK double mutant and identification of Fnr boxes have defined a minimal Fnr regulon in this bacterium. However, expression of a substantial number of anaerobically regulated genes was not affected in the double mutant. Additional regulators such regBA, whose expression is also activated by Fnr, might also be involved in the anaerobic response. Anaerobically induced stress response genes were not regulated by Fnr but apparently induced by stress conditions inherent to anaerobic growth, probably due to accumulation of nitrite and nitric oxide.
Collapse
|
7
|
Aulestia M, Flores A, Mangas EL, Pérez-Pulido AJ, Santero E, Camacho EM. Isolation and genomic characterization of the ibuprofen-degrading bacterium Sphingomonas strain MPO218. Environ Microbiol 2020; 23:267-280. [PMID: 33169907 DOI: 10.1111/1462-2920.15309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/06/2020] [Indexed: 11/28/2022]
Abstract
The presence of pharmaceutical compounds in waters and soils is of particular concern because these compounds can be biologically active, even at environmental concentrations. Most pharmaceutical contaminants result from inefficient removal of these compounds during wastewater treatment. Although microorganisms able to biodegrade pharmaceuticals compounds have been described, the isolation and characterization of new bacterial strains capable of degrading drugs remain important to improve the removal of this pollutant. In this work, we describe the Sphingomonas wittichii strain MPO218 as able to use ibuprofen as the sole carbon and energy source. The genome of MPO218 consists of a circular chromosome and two circular plasmids. Our analysis shows that the largest plasmid, named pIBU218, is conjugative and can horizontally transfer the capability of growing on ibuprofen after conjugation with another related bacterium, Sphingopyxis granuli TFA. This plasmid appears to be unstable since it undergoes different deletions in absence of selection when growth on ibuprofen is not selected. This is the first described example of a natural and conjugative plasmid that enables growth on ibuprofen and is another example of how horizontal gene transfer plays a crucial role in the evolution of bacteria.
Collapse
Affiliation(s)
- Magaly Aulestia
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Amando Flores
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Eugenio L Mangas
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Antonio J Pérez-Pulido
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Eduardo Santero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Eva M Camacho
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| |
Collapse
|
8
|
García-Romero I, Nogales J, Díaz E, Santero E, Floriano B. Understanding the metabolism of the tetralin degrader Sphingopyxis granuli strain TFA through genome-scale metabolic modelling. Sci Rep 2020; 10:8651. [PMID: 32457330 PMCID: PMC7250832 DOI: 10.1038/s41598-020-65258-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 11/23/2022] Open
Abstract
Sphingopyxis granuli strain TFA is an α-proteobacterium that belongs to the sphingomonads, a group of bacteria well-known for its degradative capabilities and oligotrophic metabolism. Strain TFA is the only bacterium in which the mineralisation of the aromatic pollutant tetralin has been completely characterized at biochemical, genetic, and regulatory levels and the first Sphingopyxis characterised as facultative anaerobe. Here we report additional metabolic features of this α-proteobacterium using metabolic modelling and the functional integration of genomic and transcriptomic data. The genome-scale metabolic model (GEM) of strain TFA, which has been manually curated, includes information on 743 genes, 1114 metabolites and 1397 reactions. This represents the largest metabolic model for a member of the Sphingomonadales order thus far. The predictive potential of this model was validated against experimentally calculated growth rates on different carbon sources and under different growth conditions, including both aerobic and anaerobic metabolisms. Moreover, new carbon and nitrogen sources were predicted and experimentally validated. The constructed metabolic model was used as a platform for the incorporation of transcriptomic data, generating a more robust and accurate model. In silico flux analysis under different metabolic scenarios highlighted the key role of the glyoxylate cycle in the central metabolism of strain TFA.
Collapse
Affiliation(s)
- Inmaculada García-Romero
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, ES-41013, Seville, Spain
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology. Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), 28040, Madrid, Spain
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, ES-41013, Seville, Spain
| | - Belén Floriano
- Department of Molecular Biology and Biochemical Engineering. Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| |
Collapse
|
9
|
Special Issue: Genetics of Biodegradation and Bioremediation. Genes (Basel) 2020; 11:genes11040441. [PMID: 32316688 PMCID: PMC7230606 DOI: 10.3390/genes11040441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023] Open
Abstract
Many different biodegradation pathways, both aerobic and anaerobic, have already been characterised, and the phylogenetic relationships among catabolic genes within the different types of pathways have been studied. However, new biodegradation activities and their coding genes are continuously being reported, including those involved in the catabolism of emerging contaminants or those generally regarded as non-biodegradable. Gene regulation is also an important issue for the efficient biodegradation of contaminants. Specific induction by the substrate and over-imposed global regulatory networks adjust the expression of the biodegradation genes to the bacterial physiological needs. New biodegradation pathways can be assembled in a particular strain or in a bacterial consortium by recruiting biodegradation genes from different origins through horizontal gene transfer. The abundance and diversity of biodegradation genes, analysed by either genomic or metagenomic approaches, constitute valuable indicators of the biodegradation potential of a particular environmental niche. This knowledge paves the way to systems metabolic engineering approaches to valorise biowaste for the production of value-added products.
Collapse
|
10
|
de Dios R, Rivas-Marin E, Santero E, Reyes-Ramírez F. Two paralogous EcfG σ factors hierarchically orchestrate the activation of the General Stress Response in Sphingopyxis granuli TFA. Sci Rep 2020; 10:5177. [PMID: 32198475 PMCID: PMC7083833 DOI: 10.1038/s41598-020-62101-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Under ever-changing environmental conditions, the General Stress Response (GSR) represents a lifesaver for bacteria in order to withstand hostile situations. In α-proteobacteria, the EcfG-type extracytoplasmic function (ECF) σ factors are the key activators of this response at the transcriptional level. In this work, we address the hierarchical function of the ECF σ factor paralogs EcfG1 and EcfG2 in triggering the GSR in Sphingopyxis granuli TFA and describe the role of EcfG2 as global switch of this response. In addition, we define a GSR regulon for TFA and use in vitro transcription analysis to study the relative contribution of each EcfG paralog to the expression of selected genes. We show that the features of each promoter ultimately dictate this contribution, though EcfG2 always produced more transcripts than EcfG1 regardless of the promoter. These first steps in the characterisation of the GSR in TFA suggest a tight regulation to orchestrate an adequate protective response in order to survive in conditions otherwise lethal.
Collapse
Affiliation(s)
- Rubén de Dios
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Francisca Reyes-Ramírez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain.
| |
Collapse
|