1
|
Hu T, Duan L, Shangguan L, Zhao Q, Hang Y, Wang X, Li X, Yang N, Yan F, Lv Q, Tang L, Liu M, Qiang W, Wang X, Wang X, Zhang M. Haploid-Phased Chromosomal Telomere-to-Telomere Genome Assembly of Medicinal Plant Uncaria rhynchophylla Dissects Genetic Controls on the Biosynthesis of Bioactive Alkaloids. PLANT, CELL & ENVIRONMENT 2025; 48:1932-1946. [PMID: 39511975 DOI: 10.1111/pce.15257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024]
Abstract
Natural indole alkaloids provide important medicinal resources and defences to environmental stresses. The Uncaria genus is a recorded traditional medicinal woody plant with high alkaloids. Genomic insights into alkaloid variation remain elusive. Here, we have dissected the haploid-resolved chromosomal T2T genome assembly of Uncaria rhynchophylla with a size of ~634 Mb and contig N50 of 27 Mb using PacBio HiFi long-reads plus Hi-C reads and anchored the contigs on 22 pairs of confirmed chromosomes. This genome contains 56% repeat sequences and ~29 000 protein-encoding genes. U. rhynchophylla diverged from a common ancestor shared with Coffea around 20 million years ago and contains expanded and contracted gene families associated with secondary metabolites and defences/resistance to stresses. We constructed the pathway and mined genes for rhynchophylline alkaloid biosynthesis. Fifty-three alkaloids in this pathway and eight differentially expressed genes are the keys to alkaloid accumulation. Elevated alkaloid levels are driven by high copy numbers of critical genes STRs and SGRs involved in strictosidine synthesis and hydrolysis as evidenced by phylogenetic, expression and RNA interference analyses. These results advance our genetic understanding and guide further breeding improvements, stress adaptation studies and pharmaceutical development.
Collapse
Affiliation(s)
- Tao Hu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang, China
| | - Lei Duan
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA
| | - Liyang Shangguan
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang, China
| | - Qingshi Zhao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang, China
| | - Ye Hang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang, China
| | - Xiaohong Wang
- Institute of Sericulture Science, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Xue Li
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, China
| | - Ningxian Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang, China
| | - Fulin Yan
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang, China
| | - Qiuyu Lv
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang, China
| | - Liu Tang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang, China
| | - Miao Liu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang, China
| | - Wei Qiang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang, China
| | - Xincun Wang
- Sinopharm Group Tongjitang(Guizhou) Pharmaceutical Co., Guiyang, China
| | - Xuewen Wang
- Health Science Center, University of North Texas, Fort Worth, Texas, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Mingsheng Zhang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Ali R, Chaluvadi SR, Wang X, Hazzouri KM, Sudalaimuthuasari N, Rafi M, Al-Nuaimi M, Sasi S, Antepenko E, Bennetzen JL, Amiri KMA. Microbiome properties in the root nodules of Prosopis cineraria, a leguminous desert tree. Microbiol Spectr 2024; 12:e0361723. [PMID: 38624222 PMCID: PMC11237379 DOI: 10.1128/spectrum.03617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/14/2024] [Indexed: 04/17/2024] Open
Abstract
We conducted a comprehensive analysis of the total microbiome and transcriptionally active microbiome communities in the roots and root nodules of Prosopis cineraria, an important leguminous tree in arid regions of many Asian countries. Mature P. cineraria trees growing in the desert did not exhibit any detected root nodules. However, we observed root nodules on the roots of P. cineraria growing on a desert farm and on young plants growing in a growth chamber, when inoculated with rhizosphere soil, including with rhizosphere soil from near desert tree roots that had no nodules. Compared to nearby soil, non-nodulated roots were enriched with Actinobacteria (e.g., Actinophytocola sp.), whereas root nodules sampled from the desert farm and growth chamber had abundant Alphaproteobacteria (e.g., Ensifer sp.). These nodules yielded many microbes in addition to such nitrogen-fixing bacteria as Ensifer and Sinorhizobium species. Significant differences exist in the composition and abundance of microbial isolates between the nodule surface and the nodule endosphere. Shotgun metagenome analysis of nodule endospheres revealed that the root nodules comprised over 90% bacterial DNA, whereas metatranscriptome analysis showed that the plant produces vastly more transcripts than the microbes in these nodules. Control inoculations demonstrated that four out of six Rhizobium, Agrobacterium, or Ensifer isolates purified from P. cineraria nodules produced nodules in the roots of P. cineraria seedlings under greenhouse conditions. The best nodulation was achieved when seedlings were inoculated with a mixture of those bacterial strains. Though root nodulation could be achieved under water stress conditions, nodule number and nodule biomass increased with copious water availability. .IMPORTANCEMicrobial communities were investigated in roots and root nodules of Prosopis cineraria, a leguminous tree species in arid Asian regions that is responsible for exceptionally important contributions to soil fertility in these dramatically dry locations. Soil removed from regions near nodule-free roots on these mature plants contained an abundance of bacteria with the genetic ability to generate nodules and fix nitrogen but did not normally nodulate in their native rhizosphere environment, suggesting a very different co-evolved relationship than that observed for herbaceous legumes. The relative over-expression of the low-gene-density plant DNA compared to the bacterial DNA in the nodules was also unexpected, indicating a very powerful induction of host genetic contributions within the nodule. Finally, the water dependence of nodulation in inoculated seedlings suggested a possible link between early seedling growth (before a deep root system can be developed) and the early development of nitrogen-fixing capability.
Collapse
Affiliation(s)
- Rashid Ali
- Mitrix Bio., Inc., Farmington, Connecticut, USA
| | | | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Khaled M. Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | | | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | - Mariam Al-Nuaimi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | - Shina Sasi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | - Eric Antepenko
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | | | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
3
|
Fan YG, Zhao TT, Xiang QZ, Han XY, Yang SS, Zhang LX, Ren LJ. Multi-Omics Research Accelerates the Clarification of the Formation Mechanism and the Influence of Leaf Color Variation in Tea ( Camellia sinensis) Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:426. [PMID: 38337959 PMCID: PMC10857240 DOI: 10.3390/plants13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Tea is a popular beverage with characteristic functional and flavor qualities, known to be rich in bioactive metabolites such as tea polyphenols and theanine. Recently, tea varieties with variations in leaf color have been widely used in agriculture production due to their potential advantages in terms of tea quality. Numerous studies have used genome, transcriptome, metabolome, proteome, and lipidome methods to uncover the causes of leaf color variations and investigate their impacts on the accumulation of crucial bioactive metabolites in tea plants. Through a comprehensive review of various omics investigations, we note that decreased expression levels of critical genes in the biosynthesis of chlorophyll and carotenoids, activated chlorophyll degradation, and an impaired photosynthetic chain function are related to the chlorina phenotype in tea plants. For purple-leaf tea, increased expression levels of late biosynthetic genes in the flavonoid synthesis pathway and anthocyanin transport genes are the major and common causes of purple coloration. We have also summarized the influence of leaf color variation on amino acid, polyphenol, and lipid contents and put forward possible causes of these metabolic changes. Finally, this review further proposes the research demands in this field in the future.
Collapse
Affiliation(s)
- Yan-Gen Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Ting-Ting Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Qin-Zeng Xiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Xiao-Yang Han
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Shu-Sen Yang
- Yipinming Tea Planting Farmers Specialized Cooperative, Longnan 746400, China;
| | - Li-Xia Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Li-Jun Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| |
Collapse
|
4
|
Song J, Xu R, Guo Q, Wu C, Li Y, Wang X, Wang J, Qiu LJ. An omics strategy increasingly improves the discovery of genetic loci and genes for seed-coat color formation in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:71. [PMID: 37663546 PMCID: PMC10471558 DOI: 10.1007/s11032-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023]
Abstract
The phenotypic color of seeds is a complex agronomic trait and has economic and biological significance. The genetic control and molecular regulation mechanisms have been extensively studied. Here, we used a multi-omics strategy to explore the color formation in soybean seeds at a big data scale. We identified 13 large quantitative trait loci (QTL) for color with bulk segregating analysis in recombinant inbreeding lines. GWAS analysis of colors and decomposed attributes in 763 germplasms revealed associated SNP sites perfectly falling in five major QTL, suggesting inherited regulation on color during natural selection. Further transcriptomics analysis before and after color accumulation revealed 182 differentially expression genes (DEGs) in the five QTL, including known genes CHS, MYB, and F3'H involved in pigment accumulation. More DEGs with consistently upregulation or downregulation were identified as shared regulatory genes for two or more color formations while some DEGs were only for a specific color formation. For example, five upregulated DEGs in QTL qSC-3 were in flavonoid biosynthesis responsible for black and brown seed. The DEG (Glyma.08G085400) was identified in the purple seed only, which encodes gibberellin 2-beta-dioxygenase in the metabolism of colorful terpenoids. The candidate genes are involved in flavonoid biosynthesis, transcription factor regulation, gibberellin and terpenoid metabolism, photosynthesis, ascorbate and aldarate metabolism, and lipid metabolism. Seven differentially expressed transcription factors were also speculated that may regulate color formation, including a known MYB. The finds expand QTL and gene candidates for color formation, which could guide to breed better cultivars with designed colors. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01414-z.
Collapse
Affiliation(s)
- Jian Song
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Ruixin Xu
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Qingyuan Guo
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Caiyu Wu
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Yinghui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Jun Wang
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
5
|
Li XX, Li ZY, Zhu W, Wang YQ, Liang YR, Wang KR, Ye JH, Lu JL, Zheng XQ. Anthocyanin metabolism and its differential regulation in purple tea (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107875. [PMID: 37451003 DOI: 10.1016/j.plaphy.2023.107875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Tea plants (Camellia sinensis) typically contain high-flavonoid phytochemicals like catechins. Recently, new tea cultivars with unique purple-colored leaves have gained attention. These purple tea cultivars are enriched with anthocyanin, which provides an interesting perspective for studying the metabolic flux of the flavonoid pathway. An increasing number of studies are focusing on the leaf color formation of purple tea and this review aims to summarize the latest progress made on the composition and accumulation of anthocyanins in tea plants. In addition, the regulation mechanism in its synthesis will be discussed and a hypothetical regulation model for leaf color transformation during growth will be proposed. Some novel insights are presented to facilitate future in-depth studies of purple tea to provide a theoretical basis for targeted breeding programs in leaf color.
Collapse
Affiliation(s)
- Xiao-Xiang Li
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ze-Yu Li
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Wan Zhu
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ying-Qi Wang
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Kai-Rong Wang
- General Agrotechnical Extension Station of Ningbo City, Ningbo, Zhejiang, 315000, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
6
|
Liu ZW, Shi XY, Duan SM, Nian B, Chen LJ, Zhang GH, Lv CY, Ma Y, Zhao M. Multiomics analysis of the mechanisms behind flavonoid differences between purple and green tender shoots of Camellia sinensis var. assamica. G3 (BETHESDA, MD.) 2022; 13:6808630. [PMID: 36342187 PMCID: PMC9911070 DOI: 10.1093/g3journal/jkac297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Abstract
Flavonoids are rich in tea plants (Camellia sinensis), and responsible for the flavor and healthful benefits of tea beverage. The anthocyanin levels in the purple tender shoots are higher than in the general green leaves of tea plant, which provide special materials to search metabolic mechanisms of flavonoid enrichment in plant. In this work, flavonoid differences between purple and green shoots from tea cultivars "Zijuan" (ZJ) and "Yunkang10" (YK-10) were investigated through metabolomic analysis, and mechanisms for their difference were surveyed by comparative transcriptomic and proteomic analysis. Levels of 34 flavonoids were different between ZJ and YK-10 shoots. Among them, 8 and 6 were marker metabolites in ZJ and YK-10, respectively. The differentially expressed genes (DEGs), differentially expressed proteins (DEPs), and different-level metabolites (DLMs) between ZJ and YK-10 were researched, respectively; and interactions including DEG-DLM, DEP-DLM, DEG-DEP, and DEG-DEP-DLM were analyzed; the contents of 18 characteristic flavonoids in tea leaves and expressions of 34 flavonoid metabolic genes were measured to verify the omics results. Integrated above analyses, a proposed model of flavonoids biosynthesis in tea shoots were established. The differential expression of the leucoanthocyanidin reductase (LAR), anthocyanidin synthase (ANS), anthocyanidin reductase (ANR), UDPG-flavonoid glucosyltransferase (UGT) 75L12 and 94P1 at gene level, and the ANS, ANR, and UGT78A15 at protein level, were closely associated with differences in flavonoids between ZJ and YK-10 shoot. Together, this study provides new information on the flavonoid accumulation mechanism in tea plant.
Collapse
Affiliation(s)
| | | | | | - Bo Nian
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Li-Jiao Chen
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Guang-Hui Zhang
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Cai-You Lv
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yan Ma
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ming Zhao
- Corresponding author: College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, No. 452, Fengyuan Road, Kunming, Yunnan 650201, China.
| |
Collapse
|
7
|
Zhao S, Cheng H, Xu P, Wang Y. Regulation of biosynthesis of the main flavor-contributing metabolites in tea plant ( Camellia sinensis): A review. Crit Rev Food Sci Nutr 2022; 63:10520-10535. [PMID: 35608014 DOI: 10.1080/10408398.2022.2078787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the process of adapting to the environment, tea plants (Camellia sinensis) endow tea with unique flavor and health functions, which should be attributed to secondary metabolites, including catechins, L-theanine, caffeine and terpene volatiles. Since the content of these flavor-contributing metabolites are mainly determined by the growth of tea plant, it is very important to understand their alteration and regulation mechanisms. In the present work, we first summarize the distribution, change characteristics of the main flavor-contributing metabolites in different cultivars, organs and under environmental stresses of tea plant. Subsequently, we discuss the regulating mechanisms involved in the biosynthesis of these metabolites based on the existing evidence. Finally, we propose the remarks and perspectives on the future study relating flavor-contributing metabolites. This review would contribute to the acceleration of research on the characteristic secondary metabolites and the breeding programs in tea plants.
Collapse
Affiliation(s)
- Shiqi Zhao
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Haiyan Cheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Xu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Zhang S, Yu Z, Qi X, Wang Z, Zheng Y, Ren H, Liang S, Zheng X. Construction of a High-Density Genetic Map and Identification of Leaf Trait-Related QTLs in Chinese Bayberry ( Myrica rubra). FRONTIERS IN PLANT SCIENCE 2021; 12:675855. [PMID: 34194452 PMCID: PMC8238045 DOI: 10.3389/fpls.2021.675855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Chinese bayberry (Myrica rubra) is an economically important fruit tree that is grown in southern China. Owing to its over 10-year seedling period, the crossbreeding of bayberry is challenging. The characteristics of plant leaves are among the primary factors that control plant architecture and potential yields, making the analysis of leaf trait-related genetic factors crucial to the hybrid breeding of any plant. In the present study, molecular markers associated with leaf traits were identified via a whole-genome re-sequencing approach, and a genetic map was thereby constructed. In total, this effort yielded 902.11 Gb of raw data that led to the identification of 2,242,353 single nucleotide polymorphisms (SNPs) in 140 F1 individuals and parents (Myrica rubra cv. Biqizhong × Myrica rubra cv. 2012LXRM). The final genetic map ultimately incorporated 31,431 SNPs in eight linkage groups, spanning 1,351.85 cM. This map was then used to assemble and update previous scaffold genomic data at the chromosomal level. The genome size of M. rubra was thereby established to be 275.37 Mb, with 94.98% of sequences being assembled into eight pseudo-chromosomes. Additionally, 18 quantitative trait loci (QTLs) associated with nine leaf and growth-related traits were identified. Two QTL clusters were detected (the LG3 and LG5 clusters). Functional annotations further suggested two chlorophyll content-related candidate genes being identified in the LG5 cluster. Overall, this is the first study on the QTL mapping and identification of loci responsible for the regulation of leaf traits in M. rubra, offering an invaluable scientific for future marker-assisted selection breeding and candidate gene analyses.
Collapse
Affiliation(s)
| | | | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
9
|
Huang L, Zhang L, Zeng R, Wang X, Zhang H, Wang L, Liu S, Wang X, Chen T. Brassinosteroid Priming Improves Peanut Drought Tolerance via Eliminating Inhibition on Genes in Photosynthesis and Hormone Signaling. Genes (Basel) 2020; 11:genes11080919. [PMID: 32796553 PMCID: PMC7465412 DOI: 10.3390/genes11080919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 01/11/2023] Open
Abstract
Drought negatively affects the growth and yield of terrestrial crops. Seed priming, pre-exposing seed to a compound, could induce improved tolerance and adaptation to stress in germinated plants. To understand the effects and regulatory mechanism of seed priming with brassinosteroid (BR) on peanut plants, we treated seeds with five BR concentrations and examined dozens of physiological and biochemical features, and transcriptomic changes in leaves under well-watered and drought conditions. We found optimal 0.15 ppm BR priming could reduce inhibitions from drought and increase the yield of peanut, and priming effects are dependent on stage of plant development and duration of drought. BR priming induced fewer differentially expressed genes (DEGs) than no BR priming under well-watered condition. Drought with BR priming reduced the number of DEGs than drought only. These DEGs were enriched in varied gene ontologies and metabolism pathways. Downregulation of DEGs involved in both light perceiving and photosynthesis in leaves is consistent with low parameters of photosynthesis. Optimal BR priming partially rescued the levels of growth promoting auxin and gibberellin which were largely reduced by drought, and increased levels of defense associated abscisic acid and salicylic acid after long-term drought. BR priming induced many DEGs which function as kinase or transcription factor for signal cascade under drought. We proposed BR priming-induced regulatory responses will be memorized and recalled for fast adaptation in later drought stress. These results provide physiological and regulatory bases of effects of seed priming with BR, which can help to guide the framing improvement under drought stress.
Collapse
Affiliation(s)
- Luping Huang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Lei Zhang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Ruier Zeng
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Xinyue Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Huajian Zhang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Leidi Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Shiyuan Liu
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Correspondence: (X.W.); (T.C.)
| | - Tingting Chen
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
- Correspondence: (X.W.); (T.C.)
| |
Collapse
|
10
|
Chen T, Zhang H, Zeng R, Wang X, Huang L, Wang L, Wang X, Zhang L. Shade Effects on Peanut Yield Associate with Physiological and Expressional Regulation on Photosynthesis and Sucrose Metabolism. Int J Mol Sci 2020; 21:ijms21155284. [PMID: 32722456 PMCID: PMC7432592 DOI: 10.3390/ijms21155284] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 01/07/2023] Open
Abstract
Intercropping improves land utilization with more crops grown together; however, shorter crops in intercropping experience stress, being shaded by the taller crops. Systematic changes in phenotype, physiology, yield, and gene regulation under shade stress in peanut are largely unknown, although shade responses have been well analyzed in model plants. We exposed peanut plants to simulated 40% and 80% shade for 15 and 30 days at the seedling stage, flowering stage, and both stages. Shade caused the increased elongation growth of the main stem, internode, and leaf, and elongation was positively associated with auxin levels. Shade stress reduced peanut yield. Further comparative RNA-seq analyses revealed expressional changes in many metabolism pathways and common core sets of expressional regulations in all shade treatments. Expressional downregulation of most genes for light-harvesting and photosynthesis agreed with the observed decreased parameters of photosynthesis processes. Other major regulations included expressional downregulation of most core genes in the sucrose and starch metabolism, and growth-promoting genes in plant hormone signal pathways. Together, the results advance our understanding of physiological and molecular regulation in shade avoidance in peanut, which could guide the breeding designing in the intercropping system.
Collapse
Affiliation(s)
- Tingting Chen
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (T.C.); (H.Z.); (R.Z.); (X.W.); (L.H.); (L.W.)
| | - Huajian Zhang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (T.C.); (H.Z.); (R.Z.); (X.W.); (L.H.); (L.W.)
| | - Ruier Zeng
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (T.C.); (H.Z.); (R.Z.); (X.W.); (L.H.); (L.W.)
| | - Xinyue Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (T.C.); (H.Z.); (R.Z.); (X.W.); (L.H.); (L.W.)
| | - Luping Huang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (T.C.); (H.Z.); (R.Z.); (X.W.); (L.H.); (L.W.)
| | - Leidi Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (T.C.); (H.Z.); (R.Z.); (X.W.); (L.H.); (L.W.)
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Correspondence: (X.W.); (L.Z.)
| | - Lei Zhang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (T.C.); (H.Z.); (R.Z.); (X.W.); (L.H.); (L.W.)
- Correspondence: (X.W.); (L.Z.)
| |
Collapse
|