1
|
Sigurðardóttir H, Eriksson S, Niazi A, Rhodin M, Albertsdóttir E, Kristjansson T, Lindgren G. Genetic influence of a STAU2 frameshift mutation and RELN regulatory elements on performance in Icelandic horses. Sci Rep 2025; 15:11641. [PMID: 40185812 PMCID: PMC11971302 DOI: 10.1038/s41598-025-95593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Selection for performance in horse breeding benefits from precise genetic insights at a molecular level, but knowledge remains limited. This study used whole-genome sequences of 39 elite and non-elite Icelandic horses to identify candidate causal variants linked to previously identified haplotypes in the STAU2 and RELN genes affecting pace and other gaits. A frameshift variant in linkage disequilibrium with the previously identified haplotypes in the STAU2 gene (r2 = 0.85) was identified within a predicted STAU2 transcript. This variant alters the amino acid sequence and introduces a premature stop codon but does not appear harmful or disease-causing and is potentially unique to equine biology. A large portion of the RELN haplotype overlapped with an H3K27me3 modification mark, suggesting a regulatory role of this region. Despite the small sample size, the RELN haplotype's effects were validated for tölt, trot, and canter/gallop. Additionally, the RELN haplotype significantly influenced the age at which horses were presented for breeding field tests, indicating a potential role of the region in precocity and trainability. Functional experiments are needed to further investigate the regions' influences on biological processes and their potential impact on horse performance.
Collapse
Affiliation(s)
- Heiðrún Sigurðardóttir
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, Uppsala, SE-75007, Sweden.
- Faculty of Agricultural Sciences, Agricultural University of Iceland, Hvanneyri, Borgarbyggð, IS-311, Iceland.
| | - Susanne Eriksson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, Uppsala, SE-75007, Sweden
| | - Adnan Niazi
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, Uppsala, SE-75007, Sweden
| | - Marie Rhodin
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, Uppsala, SE-75007, Sweden
| | | | - Thorvaldur Kristjansson
- Faculty of Agricultural Sciences, Agricultural University of Iceland, Hvanneyri, Borgarbyggð, IS-311, Iceland
- The Icelandic Agricultural Advisory Centre, Höfðabakka 9, Reykjavik, IS-110, Iceland
| | - Gabriella Lindgren
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, Uppsala, SE-75007, Sweden
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven, BE-3001, Belgium
| |
Collapse
|
2
|
Barber AM, Kingsley NB, Peng S, Giulotto E, Bellone RR, Finno CJ, Kalbfleisch T, Petersen JL. Annotation of cis-regulatory-associated histone modifications in the genomes of two Thoroughbred stallions. Front Genet 2025; 16:1534461. [PMID: 40084169 PMCID: PMC11903428 DOI: 10.3389/fgene.2025.1534461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
The Functional Annotation of Animal Genomes (FAANG) consortium aims to annotate animal genomes across species, and work in the horse has substantially contributed to that goal. As part of this initiative, chromatin immunoprecipitation with sequencing (ChIP-seq) was performed to identify histone modifications corresponding to enhancers (H3K4me1), promoters (H3K4me3), activators (H3K27ac), and repressors (H3K27me3) in eight tissues from two Thoroughbred stallions: adipose, parietal cortex, heart, lamina, liver, lung, skeletal muscle, and testis. The average genome coverage of peaks identified by MACS2 for H3K4me1, H3K4me3, and H3K27ac was 6.2%, 2.2%, and 4.1%, respectively. Peaks were called for H3K27me3, a broad mark, using both MACS2 and SICERpy, with MACS2 identifying a greater average number of peaks (158K; 10.4% genome coverage) than SICERpy (32K; 24.3% genome coverage). Tissue-unique peaks were identified with BEDTools, and 1%-47% of peaks were unique to a tissue for a given histone modification. However, correlations among usable reads, total peak number, and unique peak number ranged from 0.01 to 0.92, indicating additional data collection is necessary to parse technical from true biological differences. These publicly available data expand a growing resource available for identifying regulatory regions within the equine genome, and they serve as a reference for genome regulation across healthy tissues of the adult Thoroughbred stallion.
Collapse
Affiliation(s)
- Alexa M. Barber
- University of Nebraska Medical Center, Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE, United States
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nicole B. Kingsley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
- Veterinary Genetics Laboratory, Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
| | - Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
| | - Elena Giulotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Rebecca R. Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
- Veterinary Genetics Laboratory, Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
| | - Carrie J. Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
| | - Ted Kalbfleisch
- Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
3
|
Heath HD, Peng S, Szmatola T, Ryan S, Bellone RR, Kalbfleisch T, Petersen JL, Finno CJ. A comprehensive allele specific expression resource for the equine transcriptome. BMC Genomics 2025; 26:88. [PMID: 39885415 PMCID: PMC11780778 DOI: 10.1186/s12864-025-11240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Allele-specific expression (ASE) analysis provides a nuanced view of cis-regulatory mechanisms affecting gene expression. RESULTS An equine ASE analysis was performed, using integrated Iso-seq and short-read RNA sequencing data from four healthy Thoroughbreds (2 mares and 2 stallions) across 9 tissues from the Functional Annotation of Animal Genomes (FAANG) project. Allele expression was quantified by haplotypes from long-read data, with 42,900 allele expression events compared. Within these events, 635 (1.48%) demonstrated ASE, with liver tissue containing the highest proportion. Genetic variants within ASE events were located in histone modified regions 64.2% of the time. Validation of allele-specific variants, using a set of 66 equine liver samples from multiple breeds, confirmed that 97% of variants demonstrated ASE. CONCLUSIONS This valuable publicly accessible resource is poised to facilitate investigations into regulatory variation in equine tissues. Our results highlight the tissue-specific nature of allelic imbalance in the equine genome.
Collapse
Affiliation(s)
- Harrison D Heath
- Department of Population Health and Reproduction, Davis School of Veterinary Medicine, University of California, Room 4206 Vet Med3A One Shields Ave, Davis, CA, 95616, USA
| | - Sichong Peng
- Department of Population Health and Reproduction, Davis School of Veterinary Medicine, University of California, Room 4206 Vet Med3A One Shields Ave, Davis, CA, 95616, USA
- Present address: Eclipsebio, San Diego, CA, 92121, USA
| | - Tomasz Szmatola
- Department of Population Health and Reproduction, Davis School of Veterinary Medicine, University of California, Room 4206 Vet Med3A One Shields Ave, Davis, CA, 95616, USA
- Centre of Experimental and Innovative Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059, Kraków, Poland
| | - Stephanie Ryan
- Department of Population Health and Reproduction, Davis School of Veterinary Medicine, University of California, Room 4206 Vet Med3A One Shields Ave, Davis, CA, 95616, USA
| | - Rebecca R Bellone
- Department of Population Health and Reproduction, Davis School of Veterinary Medicine, University of California, Room 4206 Vet Med3A One Shields Ave, Davis, CA, 95616, USA
- Veterinary Genetics Laboratory, University of California, Davis School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Theodore Kalbfleisch
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, Davis School of Veterinary Medicine, University of California, Room 4206 Vet Med3A One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Fegraeus K, Rosengren MK, Naboulsi R, Orlando L, Åbrink M, Jouni A, Velie BD, Raine A, Egner B, Mattsson CM, Lång K, Zhigulev A, Björck HM, Franco-Cereceda A, Eriksson P, Andersson G, Sahlén P, Meadows JRS, Lindgren G. An endothelial regulatory module links blood pressure regulation with elite athletic performance. PLoS Genet 2024; 20:e1011285. [PMID: 38885195 PMCID: PMC11182536 DOI: 10.1371/journal.pgen.1011285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
The control of transcription is crucial for homeostasis in mammals. A previous selective sweep analysis of horse racing performance revealed a 19.6 kb candidate regulatory region 50 kb downstream of the Endothelin3 (EDN3) gene. Here, the region was narrowed to a 5.5 kb span of 14 SNVs, with elite and sub-elite haplotypes analyzed for association to racing performance, blood pressure and plasma levels of EDN3 in Coldblooded trotters and Standardbreds. Comparative analysis of human HiCap data identified the span as an enhancer cluster active in endothelial cells, interacting with genes relevant to blood pressure regulation. Coldblooded trotters with the sub-elite haplotype had significantly higher blood pressure compared to horses with the elite performing haplotype during exercise. Alleles within the elite haplotype were part of the standing variation in pre-domestication horses, and have risen in frequency during the era of breed development and selection. These results advance our understanding of the molecular genetics of athletic performance and vascular traits in both horses and humans.
Collapse
Affiliation(s)
- Kim Fegraeus
- Department of Medical Sciences, Science for life laboratory, Uppsala University, Sweden
| | - Maria K. Rosengren
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Rakan Naboulsi
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, Stockholm
| | - Ludovic Orlando
- Centre d’Anthropobiologie et de Génomique de Toulouse (CNRS UMR 5288), Université Paul Sabatier, Toulouse, France
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ahmad Jouni
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Brandon D. Velie
- School of Life & Environmental Sciences, University of Sydney, Sydney, Australia
| | - Amanda Raine
- Department of Medical Sciences, Science for life laboratory, Uppsala University, Sweden
| | - Beate Egner
- Department of Cardio-Vascular Research, Veterinary Academy of Higher Learning, Babenhausen, Germany
| | - C Mikael Mattsson
- Silicon Valley Exercise Analytics (svexa), MenloPark, CA, United States of America
| | - Karin Lång
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Artemy Zhigulev
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Hanna M. Björck
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Anders Franco-Cereceda
- Section of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Eriksson
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Göran Andersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Pelin Sahlén
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gabriella Lindgren
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Heath H, Peng S, Szmatola T, Ryan S, Bellone R, Kalbfleisch T, Petersen J, Finno C. A Comprehensive Allele Specific Expression Resource for the Equine Transcriptome. RESEARCH SQUARE 2024:rs.3.rs-4182812. [PMID: 38645140 PMCID: PMC11030527 DOI: 10.21203/rs.3.rs-4182812/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Allele-specific expression (ASE) analysis provides a nuanced view of cis-regulatory mechanisms affecting gene expression. Results An equine ASE analysis was performed, using integrated Iso-seq and short-read RNA sequencing data from four healthy Thoroughbreds (2 mares and 2 stallions) across 9 tissues from the Functional Annotation of Animal Genomes (FAANG) project. Allele expression was quantified by haplotypes from long-read data, with 42,900 allele expression events compared. Within these events, 635 (1.48%) demonstrated ASE, with liver tissue containing the highest proportion. Genetic variants within ASE events were in histone modified regions 64.2% of the time. Validation of allele-specific variants, using a set of 66 equine liver samples from multiple breeds, confirmed that 97% of variants demonstrated ASE. Conclusions This valuable publicly accessible resource is poised to facilitate investigations into regulatory variation in equine tissues. Our results highlight the tissue-specific nature of allelic imbalance in the equine genome.
Collapse
|
6
|
Heath HD, Peng S, Szmatola T, Bellone RR, Kalbfleisch T, Petersen JL, Finno CJ. A Comprehensive Allele Specific Expression Resource for the Equine Transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573798. [PMID: 38260378 PMCID: PMC10802363 DOI: 10.1101/2023.12.31.573798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Allele-specific expression (ASE) analysis provides a nuanced view of cis-regulatory mechanisms affecting gene expression. Results In this work, we introduce and highlight the significance of an equine ASE analysis, containing integrated long- and short-read RNA sequencing data, along with insight from histone modification data, from four healthy Thoroughbreds (2 mares and 2 stallions) across 9 tissues. Conclusions This valuable publicly accessible resource is poised to facilitate investigations into regulatory variation in equine tissues and foster a deeper understanding of the impact of allelic imbalance in equine health and disease at the molecular level.
Collapse
|
7
|
Cappelletti E, Piras FM, Sola L, Santagostino M, Petersen JL, Bellone RR, Finno CJ, Peng S, Kalbfleisch TS, Bailey E, Nergadze SG, Giulotto E. The localization of centromere protein A is conserved among tissues. Commun Biol 2023; 6:963. [PMID: 37735603 PMCID: PMC10514049 DOI: 10.1038/s42003-023-05335-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Centromeres are epigenetically specified by the histone H3 variant CENP-A. Although mammalian centromeres are typically associated with satellite DNA, we previously demonstrated that the centromere of horse chromosome 11 (ECA11) is completely devoid of satellite DNA. We also showed that the localization of its CENP-A binding domain is not fixed but slides within an about 500 kb region in different individuals, giving rise to positional alleles. These epialleles are inherited as Mendelian traits but their position can move in one generation. It is still unknown whether centromere sliding occurs during meiosis or during development. Here, we first improve the sequence of the ECA11 centromeric region in the EquCab3.0 assembly. Then, to test whether centromere sliding may occur during development, we map the CENP-A binding domains of ECA11 using ChIP-seq in five tissues of different embryonic origin from the four horses of the equine FAANG (Functional Annotation of ANimal Genomes) consortium. Our results demonstrate that the centromere is localized in the same region in all tissues, suggesting that the position of the centromeric domain is maintained during development.
Collapse
Affiliation(s)
| | - Francesca M Piras
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Lorenzo Sola
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco Santagostino
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rebecca R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Ted S Kalbfleisch
- Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - Ernest Bailey
- Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - Solomon G Nergadze
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elena Giulotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
8
|
Triant DA, Walsh AT, Hartley GA, Petry B, Stegemiller MR, Nelson BM, McKendrick MM, Fuller EP, Cockett NE, Koltes JE, McKay SD, Green JA, Murdoch BM, Hagen DE, Elsik CG. AgAnimalGenomes: browsers for viewing and manually annotating farm animal genomes. Mamm Genome 2023; 34:418-436. [PMID: 37460664 PMCID: PMC10382368 DOI: 10.1007/s00335-023-10008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Current genome sequencing technologies have made it possible to generate highly contiguous genome assemblies for non-model animal species. Despite advances in genome assembly methods, there is still room for improvement in the delineation of specific gene features in the genomes. Here we present genome visualization and annotation tools to support seven livestock species (bovine, chicken, goat, horse, pig, sheep, and water buffalo), available in a new resource called AgAnimalGenomes. In addition to supporting the manual refinement of gene models, these browsers provide visualization tracks for hundreds of RNAseq experiments, as well as data generated by the Functional Annotation of Animal Genomes (FAANG) Consortium. For species with predicted gene sets from both Ensembl and RefSeq, the browsers provide special tracks showing the thousands of protein-coding genes that disagree across the two gene sources, serving as a valuable resource to alert researchers to gene model issues that may affect data interpretation. We describe the data and search methods available in the new genome browsers and how to use the provided tools to edit and create new gene models.
Collapse
Affiliation(s)
- Deborah A Triant
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Amy T Walsh
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Gabrielle A Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Bruna Petry
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Morgan R Stegemiller
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Benjamin M Nelson
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Makenna M McKendrick
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Emily P Fuller
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Noelle E Cockett
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Stephanie D McKay
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Jonathan A Green
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Darren E Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Christine G Elsik
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Division of Plant Science & Technology, University of Missouri, Columbia, MO, 65211, USA.
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
9
|
Dong C, Shen S, Keleş S. AdaLiftOver: high-resolution identification of orthologous regulatory elements with Adaptive liftOver. Bioinformatics 2023; 39:btad149. [PMID: 37004197 PMCID: PMC10085516 DOI: 10.1093/bioinformatics/btad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
MOTIVATION Elucidating functionally similar orthologous regulatory regions for human and model organism genomes is critical for exploiting model organism research and advancing our understanding of results from genome-wide association studies (GWAS). Sequence conservation is the de facto approach for finding orthologous non-coding regions between human and model organism genomes. However, existing methods for mapping non-coding genomic regions across species are challenged by the multi-mapping, low precision, and low mapping rate issues. RESULTS We develop Adaptive liftOver (AdaLiftOver), a large-scale computational tool for identifying functionally similar orthologous non-coding regions across species. AdaLiftOver builds on the UCSC liftOver framework to extend the query regions and prioritizes the resulting candidate target regions based on the conservation of the epigenomic and the sequence grammar features. Evaluations of AdaLiftOver with multiple case studies, spanning both genomic intervals from epigenome datasets across a wide range of model organisms and GWAS SNPs, yield AdaLiftOver as a versatile method for deriving hard-to-obtain human epigenome datasets as well as reliably identifying orthologous loci for GWAS SNPs. AVAILABILITY AND IMPLEMENTATION The R package and the data for AdaLiftOver is available from https://github.com/keleslab/AdaLiftOver.
Collapse
Affiliation(s)
- Chenyang Dong
- Department of Statistics, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
| | - Siqi Shen
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WARF Room 201, 610 Walnut Street, Madison, WI 53706, USA
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WARF Room 201, 610 Walnut Street, Madison, WI 53706, USA
| |
Collapse
|
10
|
Peng S, Dahlgren AR, Donnelly CG, Hales EN, Petersen JL, Bellone RR, Kalbfleisch T, Finno CJ. Functional annotation of the animal genomes: An integrated annotation resource for the horse. PLoS Genet 2023; 19:e1010468. [PMID: 36862752 PMCID: PMC10013926 DOI: 10.1371/journal.pgen.1010468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/14/2023] [Accepted: 01/28/2023] [Indexed: 03/03/2023] Open
Abstract
The genomic sequence of the horse has been available since 2009, providing critical resources for discovering important genomic variants regarding both animal health and population structures. However, to fully understand the functional implications of these variants, detailed annotation of the horse genome is required. Due to the limited availability of functional data for the equine genome, as well as the technical limitations of short-read RNA-seq, existing annotation of the equine genome contains limited information about important aspects of gene regulation, such as alternate isoforms and regulatory elements, which are either not transcribed or transcribed at a very low level. To solve above problems, the Functional Annotation of the Animal Genomes (FAANG) project proposed a systemic approach to tissue collection, phenotyping, and data generation, adopting the blueprint laid out by the Encyclopedia of DNA Elements (ENCODE) project. Here we detail the first comprehensive overview of gene expression and regulation in the horse, presenting 39,625 novel transcripts, 84,613 candidate cis-regulatory elements (CRE) and their target genes, 332,115 open chromatin regions genome wide across a diverse set of tissues. We showed substantial concordance between chromatin accessibility, chromatin states in different genic features and gene expression. This comprehensive and expanded set of genomics resources will provide the equine research community ample opportunities for studies of complex traits in the horse.
Collapse
Affiliation(s)
- Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Anna R. Dahlgren
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Callum G. Donnelly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Erin N. Hales
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska—Lincoln, Lincoln, Nebraska, United States of America
| | - Rebecca R. Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Ted Kalbfleisch
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, United States of America
| | - Carrie J. Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| |
Collapse
|
11
|
Deyneko IV. Guidelines on the performance evaluation of motif recognition methods in bioinformatics. Front Genet 2023; 14:1135320. [PMID: 36824436 PMCID: PMC9941176 DOI: 10.3389/fgene.2023.1135320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
|
12
|
Zhao Y, Hu J, Wu J, Li Z. ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, Bactrocera dorsalis. Front Genet 2023; 14:1108104. [PMID: 36911387 PMCID: PMC9996634 DOI: 10.3389/fgene.2023.1108104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: While it has been suggested that histone modifications can facilitate animal responses to rapidly changing environments, few studies have profiled whole-genome histone modification patterns in invasive species, leaving the regulatory landscape of histone modifications in invasive species unclear. Methods: Here, we screen genome-wide patterns of two important histone modifications, trimethylated Histone H3 Lysine 4 (H3K4me3) and trimethylated Histone H3 Lysine 27 (H3K27me3), in adult thorax muscles of a notorious invasive pest, the Oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), using Chromatin Immunoprecipitation with high-throughput sequencing (ChIP-seq). Results: We identified promoters featured by the occupancy of H3K4me3, H3K27me3 or bivalent histone modifications that were respectively annotated with unique genes key to muscle development and structure maintenance. In addition, we found H3K27me3 occupied the entire body of genes, where the average enrichment was almost constant. Transcriptomic analysis indicated that H3K4me3 is associated with active gene transcription, and H3K27me3 is mostly associated with transcriptional repression. Importantly, we identified genes and putative motifs modified by distinct histone modification patterns that may possibly regulate flight activity. Discussion: These findings provide the first evidence of histone modification signature in B. dorsalis, and will be useful for future studies of epigenetic signature in other invasive insect species.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiajiao Wu
- Technology Center of Guangzhou Customs, Guangzhou, China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Peng S, Magdesian KG, Dowd J, Blea J, Carpenter R, Ho W, Finno CJ. Investigation of high gamma-glutamyltransferase syndrome in California Thoroughbred racehorses. J Vet Intern Med 2022; 36:2203-2212. [PMID: 36377652 PMCID: PMC9708438 DOI: 10.1111/jvim.16582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Increases in serum gamma-glutamyltransferase (GGT) activity have been reported in Thoroughbred (TB) racehorses and associated with maladaptation to training but the underlying etiology remains unknown. HYPOTHESIS/OBJECTIVES Classify the etiology of high GGT syndrome in racing TBs by assessment of pancreatic enzymes, vitamin E concentrations, and both a candidate gene and whole genome association study. We hypothesized that a genetic variant resulting in antioxidant insufficiency or pancreatic dysfunction would be responsible for high GGT syndrome in TBs. ANIMALS A total of 138 California racing TBs. Amylase: n = 31 affected (serum GGT activity ≥60 IU/L), n = 52 control (serum GGT activity <40 IU/L). Lipase: n = 19 affected, n = 35 control. Serum α-tocopherol concentrations: n = 32 affected, n = 46 control. Genome-wide association study (GWAS): 36 affected, 58 control. Whole genome sequencing: n = 5 affected, n = 5 control. METHODS Biochemical and vitamin analytes were compared among cohorts. A GWAS was performed and a subset of TBs underwent whole genome sequencing to interrogate candidate genes and positional genetic regions. RESULTS Serum lipase and amylase activity and α-tocopherol concentrations did not differ between groups. No genetic variants were identified in 2 candidate genes (UGT1A1 and GGT1) that associated with the phenotype. Four single nucleotide polymorphisms (SNPs) approached a suggestive association with the phenotype (P = 2.15 × 10-5 ), defining a 100 kb region on chromosome 5 surrounding cluster of differentiation 1a (CD1A1), a transmembrane gene related to the major histocompatibility complex. CONCLUSIONS AND CLINICAL IMPORTANCE An underlying genetic etiology may exist for high GGT syndrome in racing TBs, similar to genetic disorders in humans.
Collapse
Affiliation(s)
- Sichong Peng
- Department of Population Health and ReproductionUniversity of CaliforniaDavisCaliforniaUSA
| | - K. Gary Magdesian
- Department of Medicine and EpidemiologySchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Joseph Dowd
- Equine Medical and Surgical GroupArcadiaCaliforniaUSA
| | - Jeffrey Blea
- Von Bleucher, Blea, Hunkin, DVM, IncSierra MadreCaliforniaUSA
| | | | - Wayne Ho
- Southern California Equine FoundationArcadiaCaliforniaUSA
| | - Carrie J. Finno
- Department of Population Health and ReproductionUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
14
|
Kingsley NB, Sandmeyer L, Bellone RR. A review of investigated risk factors for developing equine recurrent uveitis. Vet Ophthalmol 2022; 26:86-100. [PMID: 35691017 DOI: 10.1111/vop.13002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 05/27/2022] [Indexed: 12/01/2022]
Abstract
Equine recurrent uveitis (ERU) is an ocular inflammatory disease that can be difficult to manage clinically. As such, it is the leading cause of bilateral blindness for horses. ERU is suspected to have a complex autoimmune etiology with both environmental and genetic risk factors contributing to onset and disease progression in some or all cases. Work in recent years has aimed at unraveling the primary triggers, such as infectious agents and inherited breed-specific risk factors, for disease onset, persistence, and progression. This review has aimed at encompassing those factors that have been associated, implicated, or substantiated as contributors to ERU, as well as identifying areas for which additional knowledge is needed to better understand risk for disease onset and progression. A greater understanding of the risk factors for ERU will enable earlier detection and better prognosis through prevention and new therapeutics.
Collapse
Affiliation(s)
- Nicole B Kingsley
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, California, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, USA
| | - Lynne Sandmeyer
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rebecca R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, California, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, USA
| |
Collapse
|
15
|
Wang Z, Chivu AG, Choate LA, Rice EJ, Miller DC, Chu T, Chou SP, Kingsley NB, Petersen JL, Finno CJ, Bellone RR, Antczak DF, Lis JT, Danko CG. Prediction of histone post-translational modification patterns based on nascent transcription data. Nat Genet 2022; 54:295-305. [PMID: 35273399 PMCID: PMC9444190 DOI: 10.1038/s41588-022-01026-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/24/2022] [Indexed: 01/01/2023]
Abstract
The role of histone modifications in transcription remains incompletely understood. Here, we examine the relationship between histone modifications and transcription using experimental perturbations combined with sensitive machine-learning tools. Transcription predicted the variation in active histone marks and complex chromatin states, like bivalent promoters, down to single-nucleosome resolution and at an accuracy that rivaled the correspondence between independent ChIP-seq experiments. Blocking transcription rapidly removed two punctate marks, H3K4me3 and H3K27ac, from chromatin indicating that transcription is required for active histone modifications. Transcription was also required for maintenance of H3K27me3, consistent with a role for RNA in recruiting PRC2. A subset of DNase-I-hypersensitive sites were refractory to prediction, precluding models where transcription initiates pervasively at any open chromatin. Our results, in combination with past literature, support a model in which active histone modifications serve a supportive, rather than an essential regulatory, role in transcription.
Collapse
Affiliation(s)
- Zhong Wang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- School of Software Technology, Dalian University of Technology, Dalian, China
| | - Alexandra G Chivu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Lauren A Choate
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Donald C Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Tinyi Chu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Shao-Pei Chou
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Nicole B Kingsley
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, University of California, Davis, Davis, CA, USA
| | - Rebecca R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
16
|
Abstract
Thoroughbred horses have been selected for racing performance for more than 400 years. Despite continued selection, race times have not improved significantly during the past 60 years, raising the question of whether genetic variation for racing performance still exists. Studies using phenotypes such as race time, money earned, and handicapping, however, demonstrate that there is extensive variation within these traits and that they are heritable. Even so, these are poor measures of racing success since Thoroughbreds race at different ages and distances and on different types of tracks, and some may not race at all. With the advent of genomic tools, DNA variants are being identified that contribute to racing success. Aside from strong associations for myostatin variants with best racing distance, weak to modest associations with racing phenotypes are reported for other genomic regions. These data suggest that diverse genetic strategies have contributed to producing a successful racehorse, and genetic variation contributing to athleticism remains important. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ernest Bailey
- MH Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA; ,
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska, USA;
| | | |
Collapse
|
17
|
Peng S, Petersen JL, Bellone RR, Kalbfleisch T, Kingsley NB, Barber AM, Cappelletti E, Giulotto E, Finno CJ. Decoding the Equine Genome: Lessons from ENCODE. Genes (Basel) 2021; 12:genes12111707. [PMID: 34828313 PMCID: PMC8625040 DOI: 10.3390/genes12111707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
The horse reference genome assemblies, EquCab2.0 and EquCab3.0, have enabled great advancements in the equine genomics field, from tools to novel discoveries. However, significant gaps of knowledge regarding genome function remain, hindering the study of complex traits in horses. In an effort to address these gaps and with inspiration from the Encyclopedia of DNA Elements (ENCODE) project, the equine Functional Annotation of Animal Genome (FAANG) initiative was proposed to bridge the gap between genome and gene expression, providing further insights into functional regulation within the horse genome. Three years after launching the initiative, the equine FAANG group has generated data from more than 400 experiments using over 50 tissues, targeting a variety of regulatory features of the equine genome. In this review, we examine how valuable lessons learned from the ENCODE project informed our decisions in the equine FAANG project. We report the current state of the equine FAANG project and discuss how FAANG can serve as a template for future expansion of functional annotation in the equine genome and be used as a reference for studies of complex traits in horse. A well-annotated reference functional atlas will also help advance equine genetics in the pan-genome and precision medicine era.
Collapse
Affiliation(s)
- Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; (S.P.); (R.R.B.); (N.B.K.)
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE 68583-0908, USA; (J.L.P.); (A.M.B.)
| | - Rebecca R. Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; (S.P.); (R.R.B.); (N.B.K.)
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Ted Kalbfleisch
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40503, USA;
| | - N. B. Kingsley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; (S.P.); (R.R.B.); (N.B.K.)
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Alexa M. Barber
- Department of Animal Science, University of Nebraska, Lincoln, NE 68583-0908, USA; (J.L.P.); (A.M.B.)
| | - Eleonora Cappelletti
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.); (E.G.)
| | - Elena Giulotto
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.); (E.G.)
| | - Carrie J. Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; (S.P.); (R.R.B.); (N.B.K.)
- Correspondence:
| |
Collapse
|
18
|
Pan Z, Yao Y, Yin H, Cai Z, Wang Y, Bai L, Kern C, Halstead M, Chanthavixay G, Trakooljul N, Wimmers K, Sahana G, Su G, Lund MS, Fredholm M, Karlskov-Mortensen P, Ernst CW, Ross P, Tuggle CK, Fang L, Zhou H. Pig genome functional annotation enhances the biological interpretation of complex traits and human disease. Nat Commun 2021; 12:5848. [PMID: 34615879 PMCID: PMC8494738 DOI: 10.1038/s41467-021-26153-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
The functional annotation of livestock genomes is crucial for understanding the molecular mechanisms that underpin complex traits of economic importance, adaptive evolution and comparative genomics. Here, we provide the most comprehensive catalogue to date of regulatory elements in the pig (Sus scrofa) by integrating 223 epigenomic and transcriptomic data sets, representing 14 biologically important tissues. We systematically describe the dynamic epigenetic landscape across tissues by functionally annotating 15 different chromatin states and defining their tissue-specific regulatory activities. We demonstrate that genomic variants associated with complex traits and adaptive evolution in pig are significantly enriched in active promoters and enhancers. Furthermore, we reveal distinct tissue-specific regulatory selection between Asian and European pig domestication processes. Compared with human and mouse epigenomes, we show that porcine regulatory elements are more conserved in DNA sequence, under both rapid and slow evolution, than those under neutral evolution across pig, mouse, and human. Finally, we provide biological insights on tissue-specific regulatory conservation, and by integrating 47 human genome-wide association studies, we demonstrate that, depending on the traits, mouse or pig might be more appropriate biomedical models for different complex traits and diseases.
Collapse
Affiliation(s)
- Zhangyuan Pan
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Yuelin Yao
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Hongwei Yin
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Zexi Cai
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, 8300, Denmark
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Lijing Bai
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Michelle Halstead
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ganrea Chanthavixay
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | - Klaus Wimmers
- Leibniz-Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, 8300, Denmark
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, 8300, Denmark
| | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, 8300, Denmark
| | - Merete Fredholm
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederikgsberg C, 1870, Denmark
| | - Peter Karlskov-Mortensen
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederikgsberg C, 1870, Denmark
| | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Pablo Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
19
|
Prowse-Wilkins CP, Wang J, Xiang R, Garner JB, Goddard ME, Chamberlain AJ. Putative Causal Variants Are Enriched in Annotated Functional Regions From Six Bovine Tissues. Front Genet 2021; 12:664379. [PMID: 34249087 PMCID: PMC8260860 DOI: 10.3389/fgene.2021.664379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variants which affect complex traits (causal variants) are thought to be found in functional regions of the genome. Identifying causal variants would be useful for predicting complex trait phenotypes in dairy cows, however, functional regions are poorly annotated in the bovine genome. Functional regions can be identified on a genome-wide scale by assaying for post-translational modifications to histone proteins (histone modifications) and proteins interacting with the genome (e.g., transcription factors) using a method called Chromatin immunoprecipitation followed by sequencing (ChIP-seq). In this study ChIP-seq was performed to find functional regions in the bovine genome by assaying for four histone modifications (H3K4Me1, H3K4Me3, H3K27ac, and H3K27Me3) and one transcription factor (CTCF) in 6 tissues (heart, kidney, liver, lung, mammary and spleen) from 2 to 3 lactating dairy cows. Eighty-six ChIP-seq samples were generated in this study, identifying millions of functional regions in the bovine genome. Combinations of histone modifications and CTCF were found using ChromHMM and annotated by comparing with active and inactive genes across the genome. Functional marks differed between tissues highlighting areas which might be particularly important to tissue-specific regulation. Supporting the cis-regulatory role of functional regions, the read counts in some ChIP peaks correlated with nearby gene expression. The functional regions identified in this study were enriched for putative causal variants as seen in other species. Interestingly, regions which correlated with gene expression were particularly enriched for potential causal variants. This supports the hypothesis that complex traits are regulated by variants that alter gene expression. This study provides one of the largest ChIP-seq annotation resources in cattle including, for the first time, in the mammary gland of lactating cows. By linking regulatory regions to expression QTL and trait QTL we demonstrate a new strategy for identifying causal variants in cattle.
Collapse
Affiliation(s)
- Claire P Prowse-Wilkins
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Jianghui Wang
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Josie B Garner
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, Australia
| | - Michael E Goddard
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| |
Collapse
|
20
|
Peng S, Bellone R, Petersen JL, Kalbfleisch TS, Finno CJ. Successful ATAC-Seq From Snap-Frozen Equine Tissues. Front Genet 2021; 12:641788. [PMID: 34220931 PMCID: PMC8242358 DOI: 10.3389/fgene.2021.641788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
An assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) has become an increasingly popular method to assess genome-wide chromatin accessibility in isolated nuclei from fresh tissues. However, many biobanks contain only snap-frozen tissue samples. While ATAC-seq has been applied to frozen brain tissues in human, its applicability in a wide variety of tissues in horse remains unclear. The Functional Annotation of Animal Genome (FAANG) project is an international collaboration aimed to provide high quality functional annotation of animal genomes. The equine FAANG initiative has generated a biobank of over 80 tissues from two reference female animals and experiments to begin to characterize tissue specificity of genome function for prioritized tissues have been performed. Due to the logistics of tissue collection and storage, extracting nuclei from a large number of tissues for ATAC-seq at the time of collection is not always practical. To assess the feasibility of using stored frozen tissues for ATAC-seq and to provide a guideline for the equine FAANG project, we compared ATAC-seq results from nuclei isolated from frozen tissue to cryopreserved nuclei (CN) isolated at the time of tissue harvest in liver, a highly cellular homogenous tissue, and lamina, a relatively acellular tissue unique to the horse. We identified 20,000-33,000 accessible chromatin regions in lamina and 22-61,000 in liver, with consistently more peaks identified using CN isolated at time of tissue collection. Our results suggest that frozen tissues are an acceptable substitute when CN are not available. For more challenging tissues such as lamina, nuclei extraction at the time of tissue collection is still preferred for optimal results. Therefore, tissue type and accessibility to intact nuclei should be considered when designing ATAC-seq experiments.
Collapse
Affiliation(s)
- Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Rebecca Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Theodore S. Kalbfleisch
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Carrie J. Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
21
|
Davenport KM, Massa AT, Bhattarai S, McKay SD, Mousel MR, Herndon MK, White SN, Cockett NE, Smith TPL, Murdoch BM. Characterizing Genetic Regulatory Elements in Ovine Tissues. Front Genet 2021; 12:628849. [PMID: 34093640 PMCID: PMC8173140 DOI: 10.3389/fgene.2021.628849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
The Ovine Functional Annotation of Animal Genomes (FAANG) project, part of the broader livestock species FAANG initiative, aims to identify and characterize gene regulatory elements in domestic sheep. Regulatory element annotation is essential for identifying genetic variants that affect health and production traits in this important agricultural species, as greater than 90% of variants underlying genetic effects are estimated to lie outside of transcribed regions. Histone modifications that distinguish active or repressed chromatin states, CTCF binding, and DNA methylation were used to characterize regulatory elements in liver, spleen, and cerebellum tissues from four yearling sheep. Chromatin immunoprecipitation with sequencing (ChIP-seq) was performed for H3K4me3, H3K27ac, H3K4me1, H3K27me3, and CTCF. Nine chromatin states including active promoters, active enhancers, poised enhancers, repressed enhancers, and insulators were characterized in each tissue using ChromHMM. Whole-genome bisulfite sequencing (WGBS) was performed to determine the complement of whole-genome DNA methylation with the ChIP-seq data. Hypermethylated and hypomethylated regions were identified across tissues, and these locations were compared with chromatin states to better distinguish and validate regulatory elements in these tissues. Interestingly, chromatin states with the poised enhancer mark H3K4me1 in the spleen and cerebellum and CTCF in the liver displayed the greatest number of hypermethylated sites. Not surprisingly, active enhancers in the liver and spleen, and promoters in the cerebellum, displayed the greatest number of hypomethylated sites. Overall, chromatin states defined by histone marks and CTCF occupied approximately 22% of the genome in all three tissues. Furthermore, the liver and spleen displayed in common the greatest percent of active promoter (65%) and active enhancer (81%) states, and the liver and cerebellum displayed in common the greatest percent of poised enhancer (53%), repressed enhancer (68%), hypermethylated sites (75%), and hypomethylated sites (73%). In addition, both known and de novo CTCF-binding motifs were identified in all three tissues, with the highest number of unique motifs identified in the cerebellum. In summary, this study has identified the regulatory regions of genes in three tissues that play key roles in defining health and economically important traits and has set the precedent for the characterization of regulatory elements in ovine tissues using the Rambouillet reference genome.
Collapse
Affiliation(s)
- Kimberly M. Davenport
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, ID, United States
| | - Alisha T. Massa
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | | | | | - Michelle R. Mousel
- USDA, ARS, Animal Disease Research Unit, Pullman, WA, United States
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Maria K. Herndon
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Stephen N. White
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- USDA, ARS, Animal Disease Research Unit, Pullman, WA, United States
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | | | - Timothy P. L. Smith
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, NE, United States
| | - Brenda M. Murdoch
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, ID, United States
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
22
|
Evans JM, Parker HG, Rutteman GR, Plassais J, Grinwis GCM, Harris AC, Lana SE, Ostrander EA. Multi-omics approach identifies germline regulatory variants associated with hematopoietic malignancies in retriever dog breeds. PLoS Genet 2021; 17:e1009543. [PMID: 33983928 PMCID: PMC8118335 DOI: 10.1371/journal.pgen.1009543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Histiocytic sarcoma is an aggressive hematopoietic malignancy of mature tissue histiocytes with a poorly understood etiology in humans. A histologically and clinically similar counterpart affects flat-coated retrievers (FCRs) at unusually high frequency, with 20% developing the lethal disease. The similar clinical presentation combined with the closed population structure of dogs, leading to high genetic homogeneity, makes dogs an excellent model for genetic studies of cancer susceptibility. To determine the genetic risk factors underlying histiocytic sarcoma in FCRs, we conducted multiple genome-wide association studies (GWASs), identifying two loci that confer significant risk on canine chromosomes (CFA) 5 (Pwald = 4.83x10-9) and 19 (Pwald = 2.25x10-7). We subsequently undertook a multi-omics approach that has been largely unexplored in the canine model to interrogate these regions, generating whole genome, transcriptome, and chromatin immunoprecipitation sequencing. These data highlight the PI3K pathway gene PIK3R6 on CFA5, and proximal candidate regulatory variants that are strongly associated with histiocytic sarcoma and predicted to impact transcription factor binding. The CFA5 association colocalizes with susceptibility loci for two hematopoietic malignancies, hemangiosarcoma and B-cell lymphoma, in the closely related golden retriever breed, revealing the risk contribution this single locus makes to multiple hematological cancers. By comparison, the CFA19 locus is unique to the FCR and harbors risk alleles associated with upregulation of TNFAIP6, which itself affects cell migration and metastasis. Together, these loci explain ~35% of disease risk, an exceptionally high value that demonstrates the advantages of domestic dogs for complex trait mapping and genetic studies of cancer susceptibility. We have identified two regions of the canine genome that explain a striking 35% of risk for developing histiocytic sarcoma in FCRs. The disease is uniformly lethal, affects 20% of FCRs, and parallels a cancer of the same name in humans. Both regions harbor genes involved in cell migration and cancer-related pathways. The first includes variants in regulatory regions at the tumor suppressor PIK3R6 locus that are strongly associated with histiocytic sarcoma and likely confer risk for other hematopoietic cancers. FCRs with risk alleles at the second locus demonstrate increased expression of TNFAIP6, which correlates with poor prognosis in multiple human cancers. In identifying genomic differences between affected and unaffected dogs, we advance our understanding of both canine and human health biology and set the stage for the development of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jacquelyn M. Evans
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Heidi G. Parker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gerard R. Rutteman
- Department of Clinical Sciences, division Internal Medicine of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jocelyn Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Guy C. M. Grinwis
- Department Biomedical Health Sciences, division Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alexander C. Harris
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Susan E. Lana
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
23
|
Kingsley NB, Hamilton NA, Lindgren G, Orlando L, Bailey E, Brooks S, McCue M, Kalbfleisch TS, MacLeod JN, Petersen JL, Finno CJ, Bellone RR. "Adopt-a-Tissue" Initiative Advances Efforts to Identify Tissue-Specific Histone Marks in the Mare. Front Genet 2021; 12:649959. [PMID: 33841506 PMCID: PMC8033197 DOI: 10.3389/fgene.2021.649959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- N B Kingsley
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Natasha A Hamilton
- Faculty of Science, School of Life and Environmental Science, University of Sydney, Camperdown, NSW, Australia
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Livestock Genetics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Ludovic Orlando
- Centre d'Anthropobiologie et Génomique de Toulouse (CAGT), Faculté de Médecine Purpan, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Ernie Bailey
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Samantha Brooks
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Molly McCue
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - T S Kalbfleisch
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - James N MacLeod
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Rebecca R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
24
|
Kern C, Wang Y, Xu X, Pan Z, Halstead M, Chanthavixay G, Saelao P, Waters S, Xiang R, Chamberlain A, Korf I, Delany ME, Cheng HH, Medrano JF, Van Eenennaam AL, Tuggle CK, Ernst C, Flicek P, Quon G, Ross P, Zhou H. Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research. Nat Commun 2021; 12:1821. [PMID: 33758196 PMCID: PMC7988148 DOI: 10.1038/s41467-021-22100-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Gene regulatory elements are central drivers of phenotypic variation and thus of critical importance towards understanding the genetics of complex traits. The Functional Annotation of Animal Genomes consortium was formed to collaboratively annotate the functional elements in animal genomes, starting with domesticated animals. Here we present an expansive collection of datasets from eight diverse tissues in three important agricultural species: chicken (Gallus gallus), pig (Sus scrofa), and cattle (Bos taurus). Comparative analysis of these datasets and those from the human and mouse Encyclopedia of DNA Elements projects reveal that a core set of regulatory elements are functionally conserved independent of divergence between species, and that tissue-specific transcription factor occupancy at regulatory elements and their predicted target genes are also conserved. These datasets represent a unique opportunity for the emerging field of comparative epigenomics, as well as the agricultural research community, including species that are globally important food resources.
Collapse
Affiliation(s)
- Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Xiaoqin Xu
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Zhangyuan Pan
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Michelle Halstead
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ganrea Chanthavixay
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Susan Waters
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Amanda Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Ian Korf
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Mary E Delany
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Hans H Cheng
- USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | - Chris K Tuggle
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Catherine Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Gerald Quon
- Department of Molecular and Cellular Biology, University of California, David, Davis, CA, USA
| | - Pablo Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
25
|
Donnelly CG, Bellone RR, Hales EN, Nguyen A, Katzman SA, Dujovne GA, Knickelbein KE, Avila F, Kalbfleisch TS, Giulotto E, Kingsley NB, Tanaka J, Esdaile E, Peng S, Dahlgren A, Fuller A, Mienaltowski MJ, Raudsepp T, Affolter VK, Petersen JL, Finno CJ. Generation of a Biobank From Two Adult Thoroughbred Stallions for the Functional Annotation of Animal Genomes Initiative. Front Genet 2021; 12:650305. [PMID: 33763124 PMCID: PMC7982670 DOI: 10.3389/fgene.2021.650305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/15/2021] [Indexed: 12/27/2022] Open
Abstract
Following the successful creation of a biobank from two adult Thoroughbred mares, this study aimed to recapitulate sample collection in two adult Thoroughbred stallions as part of the Functional Annotation of the Animal Genome (FAANG) initiative. Both stallions underwent thorough physical, lameness, neurologic, and ophthalmic (including electroretinography) examinations prior to humane euthanasia. Epididymal sperm was recovered from both stallions immediately postmortem and cryopreserved. Aseptically collected full thickness skin biopsies were used to isolate, culture and cryopreserve dermal fibroblasts. Serum, plasma, cerebrospinal fluid, urine, and gastrointestinal content from various locations were collected and cryopreserved. Under guidance of a board-certified veterinary anatomic pathologist, 102 representative tissue samples were collected from both horses. Whole tissue samples were flash-frozen and prioritized tissues had nuclei isolated and cryopreserved. Spatially contemporaneous samples of each tissue were submitted for histologic examination. Antemortem and gross pathologic examination revealed mild abnormalities in both stallions. One stallion (ECA_UCD_AH3) had unilateral thoracic limb lameness and bilateral chorioretinal scars. The second stallion (ECA_UCD_AH4) had subtle symmetrical pelvic limb ataxia, symmetrical prostatomegally, and moderate gastrointestinal nematodiasis. DNA from each was whole-genome sequenced and genotyped using the GGP Equine 70K SNP array. The genomic resources and banked biological samples from these animals augments the existing resource available to the equine genomics community. Importantly we may now improve the resolution of tissue-specific gene regulation as affected by sex, as well as add sex-specific tissues and gametes.
Collapse
Affiliation(s)
- Callum G Donnelly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Rebecca R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Erin N Hales
- Morris Animal Foundation, Denver, CO, United States
| | - Annee Nguyen
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Scott A Katzman
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ghislaine A Dujovne
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Kelly E Knickelbein
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Felipe Avila
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ted S Kalbfleisch
- Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Elena Giulotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Nicole B Kingsley
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Jocelyn Tanaka
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Elizabeth Esdaile
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Anna Dahlgren
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Anna Fuller
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Michael J Mienaltowski
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Verena K Affolter
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
26
|
Massa AT, Mousel MR, Herndon MK, Herndon DR, Murdoch BM, White SN. Genome-Wide Histone Modifications and CTCF Enrichment Predict Gene Expression in Sheep Macrophages. Front Genet 2021; 11:612031. [PMID: 33488675 PMCID: PMC7817998 DOI: 10.3389/fgene.2020.612031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Alveolar macrophages function in innate and adaptive immunity, wound healing, and homeostasis in the lungs dependent on tissue-specific gene expression under epigenetic regulation. The functional diversity of tissue resident macrophages, despite their common myeloid lineage, highlights the need to study tissue-specific regulatory elements that control gene expression. Increasing evidence supports the hypothesis that subtle genetic changes alter sheep macrophage response to important production pathogens and zoonoses, for example, viruses like small ruminant lentiviruses and bacteria like Coxiella burnetii. Annotation of transcriptional regulatory elements will aid researchers in identifying genetic mutations of immunological consequence. Here we report the first genome-wide survey of regulatory elements in any sheep immune cell, utilizing alveolar macrophages. We assayed histone modifications and CTCF enrichment by chromatin immunoprecipitation with deep sequencing (ChIP-seq) in two sheep to determine cis-regulatory DNA elements and chromatin domain boundaries that control immunity-related gene expression. Histone modifications included H3K4me3 (denoting active promoters), H3K27ac (active enhancers), H3K4me1 (primed and distal enhancers), and H3K27me3 (broad silencers). In total, we identified 248,674 reproducible regulatory elements, which allowed assignment of putative biological function in macrophages to 12% of the sheep genome. Data exceeded the FAANG and ENCODE standards of 20 million and 45 million useable fragments for narrow and broad marks, respectively. Active elements showed consensus with RNA-seq data and were predictive of gene expression in alveolar macrophages from the publicly available Sheep Gene Expression Atlas. Silencer elements were not enriched for expressed genes, but rather for repressed developmental genes. CTCF enrichment enabled identification of 11,000 chromatin domains with mean size of 258 kb. To our knowledge, this is the first report to use immunoprecipitated CTCF to determine putative topological domains in sheep immune cells. Furthermore, these data will empower phenotype-associated mutation discovery since most causal variants are within regulatory elements.
Collapse
Affiliation(s)
- Alisha T Massa
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Michelle R Mousel
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States.,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Maria K Herndon
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - David R Herndon
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
| | - Brenda M Murdoch
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States.,Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Stephen N White
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States.,Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States.,Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
27
|
Hisey EA, Hermans H, Lounsberry ZT, Avila F, Grahn RA, Knickelbein KE, Duward-Akhurst SA, McCue ME, Kalbfleisch TS, Lassaline ME, Back W, Bellone RR. Whole genome sequencing identified a 16 kilobase deletion on ECA13 associated with distichiasis in Friesian horses. BMC Genomics 2020; 21:848. [PMID: 33256610 PMCID: PMC7706231 DOI: 10.1186/s12864-020-07265-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Distichiasis, an ocular disorder in which aberrant cilia (eyelashes) grow from the opening of the Meibomian glands of the eyelid, has been reported in Friesian horses. These misplaced cilia can cause discomfort, chronic keratitis, and corneal ulceration, potentially impacting vision due to corneal fibrosis, or, if secondary infection occurs, may lead to loss of the eye. Friesian horses represent the vast majority of reported cases of equine distichiasis, and as the breed is known to be affected with inherited monogenic disorders, this condition was hypothesized to be a simply inherited Mendelian trait. RESULTS A genome wide association study (GWAS) was performed using the Axiom 670 k Equine Genotyping array (MNEc670k) utilizing 14 cases and 38 controls phenotyped for distichiasis. An additive single locus mixed linear model (EMMAX) approach identified a 1.83 Mb locus on ECA5 and a 1.34 Mb locus on ECA13 that reached genome-wide significance (pcorrected = 0.016 and 0.032, respectively). Only the locus on ECA13 withstood replication testing (p = 1.6 × 10- 5, cases: n = 5 and controls: n = 37). A 371 kb run of homozygosity (ROH) on ECA13 was found in 13 of the 14 cases, providing evidence for a recessive mode of inheritance. Haplotype analysis (hapQTL) narrowed the region of association on ECA13 to 163 kb. Whole-genome sequencing data from 3 cases and 2 controls identified a 16 kb deletion within the ECA13 associated haplotype (ECA13:g.178714_195130del). Functional annotation data supports a tissue-specific regulatory role of this locus. This deletion was associated with distichiasis, as 18 of the 19 cases were homozygous (p = 4.8 × 10- 13). Genotyping the deletion in 955 horses from 54 different breeds identified the deletion in only 11 non-Friesians, all of which were carriers, suggesting that this could be causal for this Friesian disorder. CONCLUSIONS This study identified a 16 kb deletion on ECA13 in an intergenic region that was associated with distichiasis in Friesian horses. Further functional analysis in relevant tissues from cases and controls will help to clarify the precise role of this deletion in normal and abnormal eyelash development and investigate the hypothesis of incomplete penetrance.
Collapse
Affiliation(s)
- E A Hisey
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - H Hermans
- Department of Clinical Sciences, Utrecht University, Yalelaan 112-114, NL-3584, CM, Utrecht, The Netherlands
| | - Z T Lounsberry
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - F Avila
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - R A Grahn
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - K E Knickelbein
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
- Veterinary Medical Teaching Hospital, University of California-Davis, Davis, CA, USA
| | - S A Duward-Akhurst
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, USA
| | - M E McCue
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, USA
| | - T S Kalbfleisch
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - M E Lassaline
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - W Back
- Department of Clinical Sciences, Utrecht University, Yalelaan 112-114, NL-3584, CM, Utrecht, The Netherlands
- Department of Surgery and Anaesthesia of Domestic Animals, Ghent University, Merelbeke, Belgium
| | - R R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA.
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA.
| |
Collapse
|