1
|
Jin W, Xu Z, Song Y, Chen F. Extrachromosomal circular DNA promotes prostate cancer progression through the FAM84B/CDKN1B/MYC/WWP1 axis. Cell Mol Biol Lett 2024; 29:103. [PMID: 38997648 PMCID: PMC11245840 DOI: 10.1186/s11658-024-00616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA), a kind of circular DNA that originates from chromosomes, carries complete gene information, particularly the oncogenic genes. This study aimed to examine the contributions of FAM84B induced by eccDNA to prostate cancer (PCa) development and the biomolecules involved. METHODS The presence of eccDNA in PCa cells and the FAM84B transcripts that eccDNA carries were verified by outward and inward PCR. The effect of inhibition of eccDNA synthesis on FAM84B expression in PCa cells was analyzed by knocking down Lig3. The impact of FAM84B on the growth and metastases of PCa cells was verified by Cell Counting Kit-8 (CCK8), EdU, transwell assays, and a xenograft mouse model. Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) and dual-luciferase reporter assays were carried out to examine the effect of FAM84B/MYC on WWP1 transcription, and a co-immunoprecipitation (Co-IP) assay was conducted to verify the modification of CDKN1B by WWP1. The function of this molecular axis in PCa was explored by rescue assays. RESULTS The inhibited eccDNA synthesis significantly downregulated FAM84B in PCa cells, thereby attenuating the growth and metastasis of PCa. FAM84B promoted the transcription of WWP1 by MYC by activating the expression of MYC coterminous with the 8q24.21 gene desert in a beta catenin-dependent approach. WWP1 transcription promoted by MYC facilitated the ubiquitination and degradation of CDKN1B protein and inversely attenuated the repressive effect of CDKN1B on MYC expression. Exogenous overexpression of CDKN1B blocked FAM84B-activated MYC/WWP1 expression, thereby inhibiting PCa progression. CONCLUSIONS FAM84B promoted by eccDNA mediates degradation of CDKN1B via MYC/WWP1, thereby accelerating PCa progression.
Collapse
Affiliation(s)
- Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yan Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Fangjie Chen
- Department of Medical Genetics, China Medical University, No. 77, Puhe Road, Shenbei New District, Shenyang, 110022, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Tian S, Chen M, Jing W, Meng Q, Wu J. miR-1204 Positioning in 8q24.21 Involved in the Tumorigenesis of Colorectal Cancer by Targeting MASPIN. Protein Pept Lett 2024; 31:544-558. [PMID: 39082173 DOI: 10.2174/0109298665305114240718072029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/16/2024] [Accepted: 06/13/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Colorectal cancer remains to be the third leading cause of cancer mortality rates. Despite the diverse effects of the miRNA cluster located in PVT1 of 8q24.21 across various tumors, the specific biological function in colorectal cancer has not been clarified. METHODS The amplification of the miR-1204 cluster was analyzed with the cBioPortal database, while the expression and survival analysis of the miRNAs in the cluster were obtained from several GEO databases of colorectal cancer. To investigate the functional role of miR-1204 in colorectal cancer, overexpression and silencing experiments were performed by miR-1204 mimic and inhibitor transfection in colorectal cancer cell lines, respectively. Then, the effects of miR-1204 on cell proliferation were assessed through CCK-8, colony formation, and Edu assay. In addition, cell migration was evaluated using wound healing and Transwell assay. Moreover, candidate genes identified through RNA sequencing and predicted databases were identified and validated using PCR and western blot. A Dual-luciferase reporter experiment was conducted to identify MASPIN as the target gene of miR-1204. RESULTS In colorectal cancer, the miR-1204 cluster exhibited high amplification, and the expression levels of several cluster miRNAs were also significantly increased. Furthermore, miR-1204 was found to be significantly associated with disease-specific survival according to the analysis of GSE17536. Functional experiments demonstrated that transfection of miR-1204 mimic or inhibitor could enhance or decrease cancer cell proliferation and migration. MASPIN was identified as a target of miR-1204. Additionally, the overexpression of MASPIN partially rescued the effect of miR-1204 mimics on tumorigenic abilities in LOVO cells. CONCLUSION miR-1204 positioning in 8q24.21 promotes the proliferation and migration of colorectal cancer cells by targeting MASPIN.
Collapse
Affiliation(s)
- Simeng Tian
- Department of Surgery, The 1st Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meilin Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Department of Pathology, XiaMen SuSong Hospital, Xia- Men, China
| | - Wanting Jing
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Qinghui Meng
- Department of Surgery, The 1st Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Tatemoto P, Pértille F, Bernardino T, Zanella R, Guerrero-Bosagna C, Zanella AJ. An enriched maternal environment and stereotypies of sows differentially affect the neuro-epigenome of brain regions related to emotionality in their piglets. Epigenetics 2023; 18:2196656. [PMID: 37192378 DOI: 10.1080/15592294.2023.2196656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 05/18/2023] Open
Abstract
Epigenetic mechanisms are important modulators of neurodevelopmental outcomes in the offspring of animals challenged during pregnancy. Pregnant sows living in a confined environment are challenged with stress and lack of stimulation which may result in the expression of stereotypies (repetitive behaviours without an apparent function). Little attention has been devoted to the postnatal effects of maternal stereotypies in the offspring. We investigated how the environment and stereotypies of pregnant sows affected the neuro-epigenome of their piglets. We focused on the amygdala, frontal cortex, and hippocampus, brain regions related to emotionality, learning, memory, and stress response. Differentially methylated regions (DMRs) were investigated in these brain regions of male piglets born from sows kept in an enriched vs a barren environment. Within the latter group of piglets, we compared the brain methylomes of piglets born from sows expressing stereotypies vs sows not expressing stereotypies. DMRs emerged in each comparison. While the epigenome of the hippocampus and frontal cortex of piglets is mainly affected by the maternal environment, the epigenome of the amygdala is mainly affected by maternal stereotypies. The molecular pathways and mechanisms triggered in the brains of piglets by maternal environment or stereotypies are different, which is reflected on the differential gene function associated to the DMRs found in each piglets' brain region . The present study is the first to investigate the neuro-epigenomic effects of maternal enrichment in pigs' offspring and the first to investigate the neuro-epigenomic effects of maternal stereotypies in the offspring of a mammal.
Collapse
Affiliation(s)
- Patricia Tatemoto
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Fábio Pértille
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo - Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Thiago Bernardino
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
- Graduation Program in One Health, University of Santo Amaro, São Paulo Brazil
| | - Ricardo Zanella
- Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Carlos Guerrero-Bosagna
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Adroaldo José Zanella
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
4
|
Hernández-Gómez C, Hernández-Lemus E, Espinal-Enríquez J. CNVs in 8q24.3 do not influence gene co-expression in breast cancer subtypes. Front Genet 2023; 14:1141011. [PMID: 37274786 PMCID: PMC10236314 DOI: 10.3389/fgene.2023.1141011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
Gene co-expression networks are a useful tool in the study of interactions that have allowed the visualization and quantification of diverse phenomena, including the loss of co-expression over long distances in cancerous samples. This characteristic, which could be considered fundamental to cancer, has been widely reported in various types of tumors. Since copy number variations (CNVs) have previously been identified as causing multiple genetic diseases, and gene expression is linked to them, they have often been mentioned as a probable cause of loss of co-expression in cancerous networks. In order to carry out a comparative study of the validity of this statement, we took 477 protein-coding genes from chromosome 8, and the CNVs of 101 genes, also protein-coding, belonging to the 8q24.3 region, a cytoband that is particularly active in the appearance of breast cancer. We created CNVS-conditioned co-expression networks of each of the 101 genes in the 8q24.3 region using conditional mutual information. The study was carried out using the four molecular subtypes of breast cancer (Luminal A, Luminal B, Her2, and Basal), as well as a case corresponding to healthy samples. We observed that in all cancer cases, the measurement of the Kolmogorov-Smirnov statistic shows that there are no significant differences between one and other values of the CNVs for any case. Furthermore, the co-expression interactions are stronger in all cancer subtypes than in the control networks. However, the control network presents a homogeneously distributed set of co-expression interactions, while for cancer networks, the highest interactions are more confined to specific cytobands, in particular 8q24.3 and 8p21.3. With this approach, we demonstrate that despite copy number alterations in the 8q24 region being a common trait in breast cancer, the loss of long-distance co-expression in breast cancer is not determined by CNVs.
Collapse
Affiliation(s)
- Candelario Hernández-Gómez
- Computational Genomics Division, National Institute of Genomic Medicine, México City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, México City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, México City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, México City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
5
|
Gagliardi A, Francescato G, Ferrero G, Birolo G, Tarallo S, Francavilla A, Piaggeschi G, Di Battista C, Gallo G, Realis Luc A, Sacerdote C, Matullo G, Vineis P, Naccarati A, Pardini B. The 8q24 region hosts miRNAs altered in biospecimens of colorectal and bladder cancer patients. Cancer Med 2023; 12:5859-5873. [PMID: 36366788 PMCID: PMC10028171 DOI: 10.1002/cam4.5375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The 8q24 locus is enriched in cancer-associated polymorphisms and, despite containing relatively few protein-coding genes, it hosts the MYC oncogene and other genetic elements connected to tumorigenesis, including microRNAs (miRNAs). Research on miRNAs may provide insights into the transcriptomic regulation of this multiple cancer-associated region. MATERIAL AND METHODS We profiled all miRNAs located in the 8q24 region in 120 colorectal cancer (CRC) patients and 80 controls. miRNA profiling was performed on cancer/non-malignant adjacent mucosa, stool, and plasma extracellular vesicles (EVs), and the results validated with The Cancer Genome Atlas (TCGA) data. To verify if the 8q24-annotated miRNAs altered in CRC were dysregulated in other cancers and biofluids, we evaluated their levels in bladder cancer (BC) cases from the TCGA dataset and in urine and plasma EVs from a set of BC cases and healthy controls. RESULTS Among the detected mature miRNAs in the region, 12 were altered between CRC and adjacent mucosa (adj. p < 0.05). Five and four miRNAs were confirmed as dysregulated in the CRC and BC TCGA dataset, respectively. A co-expression analysis of tumor/adjacent tissue data from the CRC group revealed a correlation between the dysregulated miRNAs and CRC-related genes (PVT1 and MYC) annotated in 8q24 region. miR-30d-5p and miR-151a-3p, altered in CRC tissue, were also dysregulated in stool of CRC patients and urine of BC cases, respectively. Functional enrichment of dysregulated miRNA target genes highlighted terms related to TP53-mediated cell cycle control. CONCLUSIONS Altered expression of 8q24-annotated miRNAs may be relevant for the initiation and/or progression of cancer.
Collapse
Affiliation(s)
- Amedeo Gagliardi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Department of Computer ScienceUniversity of TurinTurinItaly
| | - Giulia Francescato
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | - Giulio Ferrero
- Department of Computer ScienceUniversity of TurinTurinItaly
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | | | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Candiolo Cancer Institute, FPO‐IRCCSCandiolo, TurinItaly
| | | | - Giulia Piaggeschi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
| | - Carla Di Battista
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
| | - Gaetano Gallo
- Universidad Católica San Antonio de Murcia (UCAM) Campus de los JerónimosGuadalupe, MurciaSpain
- Department of Colorectal SurgeryClinica S. RitaVercelliItaly
- Department of Surgical ScienceSapienza University of RomeRomeItaly
| | | | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Center for Cancer Prevention (CPO‐Piemonte)TurinItaly
| | | | - Paolo Vineis
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- MRC Center for Environment and Health, Imperial CollegeLondonUK
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Candiolo Cancer Institute, FPO‐IRCCSCandiolo, TurinItaly
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS CandioloTurinItaly
- Candiolo Cancer Institute, FPO‐IRCCSCandiolo, TurinItaly
| |
Collapse
|
6
|
Roles of oncogenes in esophageal squamous cell carcinoma and their therapeutic potentials. Clin Transl Oncol 2023; 25:578-591. [PMID: 36315334 DOI: 10.1007/s12094-022-02981-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer (EC) in Asia. It is a malignant digestive tract tumor with abundant gene mutations. Due to the lack of specific diagnostic markers and early cancer screening markers, most patients are diagnosed at an advanced stage. Genetic and epigenetic changes are closely related to the occurrence and development of ESCC. Here, We review the activation of proto-oncogenes into oncogenes through gene mutation and gene amplification in ESCC from a genetic and epigenetic genome perspective, We also discuss the specific regulatory mechanisms through which these oncogenes mainly affect the biological function and occurrence and development of ESCC through specific regulatory mechanisms. In addition, we summarize the clinical application value of these oncogenes is summarized, and it provides a feasible direction for clinical use as potential therapeutic and diagnostic markers.
Collapse
|
7
|
Chen YN, Shih CY, Guo SL, Liu CY, Shen MH, Chang SC, Ku WC, Huang CC, Huang CJ. Potential prognostic and predictive value of UBE2N, IMPDH1, DYNC1LI1 and HRASLS2 in colorectal cancer stool specimens. Biomed Rep 2023; 18:22. [PMID: 36846616 PMCID: PMC9945078 DOI: 10.3892/br.2023.1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy worldwide. The poor specificity and sensitivity of the fecal occult blood test has prompted the development of CRC-related genetic markers for CRC screening and treatment. Gene expression profiles in stool specimens are effective, sensitive and clinically applicable. Herein, a novel advantage of using cells shed from the colon is presented for cost-effective CRC screening. Molecular panels were generated through a series of leave-one-out cross-validation and discriminant analyses. A logistic regression model following reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry was used to validate a specific panel for CRC prediction. The panel, consisting of ubiquitin-conjugating enzyme E2 N (UBE2N), inosine monophosphate dehydrogenase 1 (IMPDH1), dynein cytoplasmic 1 light intermediate chain 1 (DYNC1LI1) and phospholipase A and acyltransferase 2 (HRASLS2), accurately recognized patients with CRC and could thus be further investigated as a potential prognostic and predictive biomarker for CRC. UBE2N, IMPDH1 and DYNC1LI1 expression levels were upregulated and HRASLS2 expression was downregulated in CRC tissues. The predictive power of the panel was 96.6% [95% confidence interval (CI), 88.1-99.6%] sensitivity and 89.7% (95% CI, 72.6-97.8%) specificity at a predicted cut-off value at 0.540, suggesting that this four-gene panel testing of stool specimens can faithfully mirror the state of the colon. On the whole, the present study demonstrates that screening for CRC or cancer detection in stool specimens collected non-invasively does not require the inclusion of an excessive number of genes, and colonic defects can be identified via the detection of an aberrant protein in the mucosa or submucosa.
Collapse
Affiliation(s)
- Yu-Nung Chen
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Cheng-Yen Shih
- Division of Gastroenterology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei 22174, Taiwan, R.O.C
| | - Shu-Lin Guo
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C,Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
| | - Chih-Yi Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Division of Pathology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan, R.O.C
| | - Ming-Hung Shen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Department of Surgery, Fu Jen Catholic University Hospital, New Taipei 24352, Taiwan, R.O.C.,PhD Program in Nutrition and Food Science, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Shih-Chang Chang
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan, R.O.C.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10090, Taiwan, R.O.C.,Correspondence to: Dr Chi-Cheng Huang, Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei 11217, Taiwan, R.O.C.
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Correspondence to: Dr Chi-Cheng Huang, Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei 11217, Taiwan, R.O.C.
| |
Collapse
|
8
|
Wang Y, Zhang C, Wang Y, Liu X, Zhang Z. Enhancer RNA (eRNA) in Human Diseases. Int J Mol Sci 2022; 23:11582. [PMID: 36232885 PMCID: PMC9569849 DOI: 10.3390/ijms231911582] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Enhancer RNAs (eRNAs), a class of non-coding RNAs (ncRNAs) transcribed from enhancer regions, serve as a type of critical regulatory element in gene expression. There is increasing evidence demonstrating that the aberrant expression of eRNAs can be broadly detected in various human diseases. Some studies also revealed the potential clinical utility of eRNAs in these diseases. In this review, we summarized the recent studies regarding the pathological mechanisms of eRNAs as well as their potential utility across human diseases, including cancers, neurodegenerative disorders, cardiovascular diseases and metabolic diseases. It could help us to understand how eRNAs are engaged in the processes of diseases and to obtain better insight of eRNAs in diagnosis, prognosis or therapy. The studies we reviewed here indicate the enormous therapeutic potency of eRNAs across human diseases.
Collapse
Affiliation(s)
- Yunzhe Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenyang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuxiang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhao Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Massó-Vallés D, Beaulieu ME, Jauset T, Giuntini F, Zacarías-Fluck MF, Foradada L, Martínez-Martín S, Serrano E, Martín-Fernández G, Casacuberta-Serra S, Castillo Cano V, Kaur J, López-Estévez S, Morcillo MÁ, Alzrigat M, Mahmoud L, Luque-García A, Escorihuela M, Guzman M, Arribas J, Serra V, Larsson LG, Whitfield JR, Soucek L. MYC Inhibition Halts Metastatic Breast Cancer Progression by Blocking Growth, Invasion, and Seeding. CANCER RESEARCH COMMUNICATIONS 2022; 2:110-130. [PMID: 36860495 PMCID: PMC9973395 DOI: 10.1158/2767-9764.crc-21-0103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/31/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
MYC's role in promoting tumorigenesis is beyond doubt, but its function in the metastatic process is still controversial. Omomyc is a MYC dominant negative that has shown potent antitumor activity in multiple cancer cell lines and mouse models, regardless of their tissue of origin or driver mutations, by impacting on several of the hallmarks of cancer. However, its therapeutic efficacy against metastasis has not been elucidated yet. Here we demonstrate for the first time that MYC inhibition by transgenic Omomyc is efficacious against all breast cancer molecular subtypes, including triple-negative breast cancer, where it displays potent antimetastatic properties both in vitro and in vivo. Importantly, pharmacologic treatment with the recombinantly produced Omomyc miniprotein, recently entering a clinical trial in solid tumors, recapitulates several key features of expression of the Omomyc transgene, confirming its clinical applicability to metastatic breast cancer, including advanced triple-negative breast cancer, a disease in urgent need of better therapeutic options. Significance While MYC role in metastasis has been long controversial, this manuscript demonstrates that MYC inhibition by either transgenic expression or pharmacologic use of the recombinantly produced Omomyc miniprotein exerts antitumor and antimetastatic activity in breast cancer models in vitro and in vivo, suggesting its clinical applicability.
Collapse
Affiliation(s)
- Daniel Massó-Vallés
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marie-Eve Beaulieu
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Toni Jauset
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Fabio Giuntini
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Mariano F. Zacarías-Fluck
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Laia Foradada
- Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandra Martínez-Martín
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Erika Serrano
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Génesis Martín-Fernández
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | | | | | - Jastrinjan Kaur
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | | | - Miguel Ángel Morcillo
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Loay Mahmoud
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Antonio Luque-García
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Marta Escorihuela
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Marta Guzman
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Joaquín Arribas
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Violeta Serra
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Jonathan R. Whitfield
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain
| | - Laura Soucek
- Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/ Natzaret, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Corresponding Author: Laura Soucek, Vall d'Hebron Institute of Oncology (VHIO), C/ Natzaret, 115-117, CELLEX Centre, Barcelona 08035, Spain. Phone: 349-3254-3450; E-mail:
| |
Collapse
|
10
|
Wang M, Li C, Shi W. FAM84B acts as a tumor promoter in human glioma via affecting the Akt/GSK-3β/β-catenin pathway. Biofactors 2021; 47:600-611. [PMID: 33759248 DOI: 10.1002/biof.1727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 01/23/2023]
Abstract
Family with sequence similarity 84, member B (FAM84B) has recently emerged as an oncoprotein in multiple types of cancer. However, whether FAM84B modulates the progression of glioma has not been determined. The goals of this work were to assess the possible relationship between FAM84B and glioma. Our data revealed high FAM84B level in glioma specimens and exhibited that the overexpression of FAM84B was correlated with a low survival rate in glioma patients. Cellular functional assays showed that silencing of FAM84B prohibited the proliferation and invasion, and induced the apoptosis of glioma cells. Further results determined that the knockdown of FAM84B remarkably decreased the levels of phosphorylated Akt and glycogen synthase kinase (GSK)-3β, and active β-catenin. Inhibition of Akt abolished the FAM84B-mediated promotion effects on Wnt/β-catenin pathway. The subcutaneous xenograft assay confirmed that the silencing of FAM84B significantly prohibited the tumorigenicity of glioma cells in vivo. Collectively, the findings from this work demonstrate that the downregulation of FAM84B exhibits a cancer-suppressive role in human glioma through the regulation of Akt/GSK-3β/β-catenin pathway.
Collapse
Affiliation(s)
- Minjuan Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Chengliang Li
- Department of General Practice, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Wei Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Wilson C, Kanhere A. 8q24.21 Locus: A Paradigm to Link Non-Coding RNAs, Genome Polymorphisms and Cancer. Int J Mol Sci 2021; 22:1094. [PMID: 33499210 PMCID: PMC7865353 DOI: 10.3390/ijms22031094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
The majority of the human genome is comprised of non-protein-coding genes, but the relevance of non-coding RNAs in complex diseases has yet to be fully elucidated. One class of non-coding RNAs is long non-coding RNAs or lncRNAs, many of which have been identified to play a range of roles in transcription and translation. While the clinical importance of the majority of lncRNAs have yet to be identified, it is puzzling that a large number of disease-associated genetic variations are seen in lncRNA genes. The 8q24.21 locus is rich in lncRNAs and very few protein-coding genes are located in this region. Interestingly, the 8q24.21 region is also a hot spot for genetic variants associated with an increased risk of cancer. Research focusing on the lncRNAs in this area of the genome has indicated clinical relevance of lncRNAs in different cancers. In this review, we summarise the lncRNAs in the 8q24.21 region with respect to their role in cancer and discuss the potential impact of cancer-associated genetic polymorphisms on the function of lncRNAs in initiation and progression of cancer.
Collapse
Affiliation(s)
| | - Aditi Kanhere
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK;
| |
Collapse
|
12
|
Pan-cancer driver copy number alterations identified by joint expression/CNA data analysis. Sci Rep 2020; 10:17199. [PMID: 33057153 PMCID: PMC7566486 DOI: 10.1038/s41598-020-74276-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
AbstractAnalysis of large gene expression datasets from biopsies of cancer patients can identify co-expression signatures representing particular biomolecular events in cancer. Some of these signatures involve genomically co-localized genes resulting from the presence of copy number alterations (CNAs), for which analysis of the expression of the underlying genes provides valuable information about their combined role as oncogenes or tumor suppressor genes. Here we focus on the discovery and interpretation of such signatures that are present in multiple cancer types due to driver amplifications and deletions in particular regions of the genome after doing a comprehensive analysis combining both gene expression and CNA data from The Cancer Genome Atlas.
Collapse
|
13
|
Shahrouzi P, Astobiza I, Cortazar AR, Torrano V, Macchia A, Flores JM, Niespolo C, Mendizabal I, Caloto R, Ercilla A, Camacho L, Arreal L, Bizkarguenaga M, Martinez-Chantar ML, Bustelo XR, Berra E, Kiss-Toth E, Velasco G, Zabala-Letona A, Carracedo A. Genomic and Functional Regulation of TRIB1 Contributes to Prostate Cancer Pathogenesis. Cancers (Basel) 2020; 12:2593. [PMID: 32932846 PMCID: PMC7565426 DOI: 10.3390/cancers12092593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the most frequent malignancy in European men and the second worldwide. One of the major oncogenic events in this disease includes amplification of the transcription factor cMYC. Amplification of this oncogene in chromosome 8q24 occurs concomitantly with the copy number increase in a subset of neighboring genes and regulatory elements, but their contribution to disease pathogenesis is poorly understood. Here we show that TRIB1 is among the most robustly upregulated coding genes within the 8q24 amplicon in prostate cancer. Moreover, we demonstrate that TRIB1 amplification and overexpression are frequent in this tumor type. Importantly, we find that, parallel to its amplification, TRIB1 transcription is controlled by cMYC. Mouse modeling and functional analysis revealed that aberrant TRIB1 expression is causal to prostate cancer pathogenesis. In sum, we provide unprecedented evidence for the regulation and function of TRIB1 in prostate cancer.
Collapse
Affiliation(s)
- Parastoo Shahrouzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
| | - Ianire Astobiza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
| | - Ana R. Cortazar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
| | - Verónica Torrano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| | - Alice Macchia
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
| | - Juana M. Flores
- Medicine and Surgery Department, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Chiara Niespolo
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (C.N.); (E.K.-T.)
| | - Isabel Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
| | - Ruben Caloto
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Amaia Ercilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
| | - Laura Camacho
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| | - Leire Arreal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
| | - Maider Bizkarguenaga
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
| | - Maria L. Martinez-Chantar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain
| | - Xose R. Bustelo
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Edurne Berra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (C.N.); (E.K.-T.)
| | - Guillermo Velasco
- Biochemistry and Molecular Biology Department, Complutense University of Madrid, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos, 28040 Madrid, Spain
| | - Amaia Zabala-Letona
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|