1
|
Liu S, Yin J, Cong K, Yue S, Zhang Y, Sun J, Ren X, Jiang K, Liu Y, Zhao X. Synergistic transcriptomic and metabolomic analyses in Zi geese ovaries with different clutch lengths. Poult Sci 2025; 104:105210. [PMID: 40294555 DOI: 10.1016/j.psj.2025.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025] Open
Abstract
The clutch is defined as consecutive days of oviposition. Clutch length is an index that reflects ovulation persistence, and is highly correlated with egg production in birds. To identify the genetic markers associated with clutch length in geese, two consecutive experiments were conducted. In the first experiment, 200 Zi geese were selected, all 230 days old, were selected from the same batch and raised individually in the same environment. Data of egg-laying and clutch traits were recorded. After the laying period, three geese with the longest clutch lengths were selected to form the length clutch group (LCG) and three geese with the shortest clutch lengths were formed the short clutch group (SCG). In the second experiment, the ovaries of six geese were collected for transcriptomic and metabolomic analyses. The results showed that large clutch length (LCL) and average clutch length (ACL) were positively correlated with egg number (EN) (P < 0.01; r = 0.63 and 0.60, respectively). Large clutch number (LCN) was significantly correlated with the peak egg number (PEN) (r = 0.58, P < 0.01) and EN (r = 0.60, P < 0.01). EN, LCN, LCL, and ACL showed significant differences (P < 0.01) between the two clutch length groups. Transcriptomic analysis identified 424 differentially expressed genes (DEGs). Functional enrichment analysis revealed that these DEGs were mainly involved in neuroactive ligand-receptor interactions, ovarian steroidogenesis, and calcium signaling pathways. Further, AVPR1A, FGF14, and LHCGR were predicted as the key genes regulating LCL. Metabolomic analysis identified 349 differential metabolites (DMs) in both the positive and negative ion modes. Pyruvate, isocitric acid, D/L‑serine, 3-phospho-d-glycerate, succinate, glycine, and glutamic acid were identified as the key metabolites mainly enriched in the signaling pathways of the TCA cycle. Integration of transcriptomic and metabolomic data revealed critical gene-metabolite pairs, including ACSL4-phosphoenolpyruvate, implicated in LCL regulation. In summary, this study provides new insights into the genes and molecular markers affecting LCL in Zi geese.
Collapse
Affiliation(s)
- Shengjun Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Jiaxin Yin
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Kexin Cong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Shan Yue
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Harbin 150086, PR China.
| | - Yuanliang Zhang
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Harbin 150086, PR China.
| | - Jinyan Sun
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Harbin 150086, PR China
| | - Xiaofang Ren
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Ke Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Yunuo Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Xiuhua Zhao
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Harbin 150086, PR China.
| |
Collapse
|
2
|
Bello SF, Xu H, Bolaji UFO, Aloryi KD, Adeola AC, Gibril BAA, Popoola MA, Zhu W, Zhang D, Zhang X, Ji C, Nie Q. Expression profiling and single nucleotide polymorphism of mitogen-activated protein kinase kinase kinase 8 MAP3K8 in white muscovy ducks (Cairina moschata). Gene 2025; 932:148901. [PMID: 39209181 DOI: 10.1016/j.gene.2024.148901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
A previous study on ovarian and hypothalami transcriptome analysis in white Muscovy duck revealed that MAP3K8 gene participated in MAPK signaling pathway that influence egg production. Additionally, MAP3K8 was predicted as a target gene of miRNA-509-3p that promotes the secretion of oestradiol which is an important hormone in egg ovulation. This suggested that MAP3K8 might have a functional role in the reproductive performance "egg production" of white Muscovy ducks. Herein, we focused on expression level of MAP3K8 in reproductive and non-reproductive tissues of highest (HP) and lowest (LP) egg producing white Muscovy ducks and identified the polymorphism in MAP3K8 and its association with three egg production traits; Age at first egg (AFE), number of eggs at 300 days (N300D) and 59 weeks (N59W). The results of expression level indicated that mRNA of MAP3K8 was significantly (p < 0.01) expressed in the oviduct than in the ovary and hypothalamus. Seven synonymous SNPs were detected, and association analysis showed that g.148303340 G>A and g.148290065 A>G were significantly (p < 0.05) associated with N300D and N59W. The results of this study might serve as molecular marker for marker-assisted selection of white Muscovy ducks for egg production.
Collapse
Affiliation(s)
- Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Agriculture Research Group, Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305-00100, Nairobi, Kenya
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Umar-Faruq Olayinka Bolaji
- Department of Animal Production, College of Food Science and Agriculture King Saud University, Riyadh, Saudi Arabia
| | - Kelvin Dodzi Aloryi
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Adeniyi Charles Adeola
- Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 Yunnan, China
| | - Bahareldin Ali Abdalla Gibril
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Institute of Biological Technology, Nanchang Normal University, Nanchang 330032, China
| | - Moshood Abiola Popoola
- Federal College of Animal Health and Production Technology, Moor Plantation, Apata, Ibadan, Nigeria; National Dairy Research Institute, Karnal, India
| | - Weijian Zhu
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Congliang Ji
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China.
| |
Collapse
|
3
|
Song X, Li S, He S, Zheng H, Li R, Liu L, Geng T, Zhao M, Gong D. Integration of Whole-Genome Resequencing and Transcriptome Sequencing Reveals Candidate Genes in High Glossiness of Eggshell. Animals (Basel) 2024; 14:1141. [PMID: 38672292 PMCID: PMC11047648 DOI: 10.3390/ani14081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Eggshell gloss is an important characteristic for the manifestation of eggshell appearance. However, no study has yet identified potential candidate genes for eggshell gloss between high-gloss (HG) and low-gloss (LG) chickens. The aim of this study was to perform a preliminary investigation into the formation mechanism of eggshell gloss and to identify potential genes. The eggshell gloss of 300-day-old Rhode Island Red hens was measured from three aspects. Uterine tissues of the selected HG and LG (n = 5) hens were collected for RNA-seq. Blood samples were also collected for whole-genome resequencing (WGRS). RNA-seq analysis showed that 150 differentially expressed genes (DEGs) were identified in the uterine tissues of HG and LG hens. These DEGs were mainly enriched in the calcium signaling pathway and the neuroactive ligand-receptor interaction pathway. Importantly, these two pathways were also significantly enriched in the WGRS analysis results. Further joint analysis of WGRS and RNA-seq data revealed that 5-hydroxytryptamine receptor 1F (HTR1F), zinc finger protein 536 (ZNF536), NEDD8 ubiquitin-like modifier (NEDD8), nerve growth factor (NGF) and calmodulin 1 (CALM1) are potential candidate genes for eggshell gloss. In summary, our research provides a reference for the study of eggshell gloss and lays a foundation for improving egg glossiness in layer breeding.
Collapse
Affiliation(s)
- Xiang Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| | - Shuo Li
- Jiangsu Beinongda Agriculture and Animal Husbandry Technology Co., Ltd., Taizhou 225300, China
| | - Shixiong He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| | - Hongxiang Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| | - Ruijie Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| |
Collapse
|
4
|
Chang Y, Guo R, Zeng T, Sun H, Tian Y, Han X, Cao Y, Xu L, Duan M, Lu L, Chen L. Analysis of Transcriptomic Differences in the Ovaries of High- and Low-Laying Ducks. Genes (Basel) 2024; 15:181. [PMID: 38397170 PMCID: PMC10887599 DOI: 10.3390/genes15020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The egg-laying performance of Shan Ma ducks (Anas Platyrhynchos) is a crucial economic trait. Nevertheless, limited research has been conducted on the egg-laying performance of this species. We examined routine blood indicators and observed higher levels of metabolic and immune-related factors in the high-egg-production group compared with the low-egg-production group. Furthermore, we explored the ovarian transcriptome of both high- and low-egg-production groups of Shan Ma ducks using Illumina NovaSeq 6000 sequencing. A total of 1357 differentially expressed genes (DEGs) were identified, with 686 down-regulated and 671 up-regulated in the high-egg-production (HEP) ducks and low-egg-production (LEP) ducks. Several genes involved in the regulation of ovarian development, including neuropeptide Y (NPY), cell cycle protein-dependent kinase 1 (CDK1), and transcription factor 1 (E2F1), exhibited significant differential expressions at varying stages of egg production. Pathway functional analysis revealed that the DEGs were primarily associated with the steroid biosynthesis pathway, and the neuroactive ligand-receptor interaction pathway exhibited higher activity in the HEP group compared to the LEP group. This study offers valuable information about and novel insights into high egg production.
Collapse
Affiliation(s)
- Yuguang Chang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Rongbing Guo
- College of Animal Sciences and Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China;
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Hanxue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Xue Han
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China;
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Ligen Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Mingcai Duan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| |
Collapse
|
5
|
Gao G, Zhang H, Ni J, Zhao X, Zhang K, Wang J, Kong X, Wang Q. Insights into genetic diversity and phenotypic variations in domestic geese through comprehensive population and pan-genome analysis. J Anim Sci Biotechnol 2023; 14:150. [PMID: 38001525 PMCID: PMC10675864 DOI: 10.1186/s40104-023-00944-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Domestic goose breeds are descended from either the Swan goose (Anser cygnoides) or the Greylag goose (Anser anser), exhibiting variations in body size, reproductive performance, egg production, feather color, and other phenotypic traits. Constructing a pan-genome facilitates a thorough identification of genetic variations, thereby deepening our comprehension of the molecular mechanisms underlying genetic diversity and phenotypic variability. RESULTS To comprehensively facilitate population genomic and pan-genomic analyses in geese, we embarked on the task of 659 geese whole genome resequencing data and compiling a database of 155 RNA-seq samples. By constructing the pan-genome for geese, we generated non-reference contigs totaling 612 Mb, unveiling a collection of 2,813 novel genes and pinpointing 15,567 core genes, 1,324 softcore genes, 2,734 shell genes, and 878 cloud genes in goose genomes. Furthermore, we detected an 81.97 Mb genomic region showing signs of genome selection, encompassing the TGFBR2 gene correlated with variations in body weight among geese. Genome-wide association studies utilizing single nucleotide polymorphisms (SNPs) and presence-absence variation revealed significant genomic associations with various goose meat quality, reproductive, and body composition traits. For instance, a gene encoding the SVEP1 protein was linked to carcass oblique length, and a distinct gene-CDS haplotype of the SVEP1 gene exhibited an association with carcass oblique length. Notably, the pan-genome analysis revealed enrichment of variable genes in the "hair follicle maturation" Gene Ontology term, potentially linked to the selection of feather-related traits in geese. A gene presence-absence variation analysis suggested a reduced frequency of genes associated with "regulation of heart contraction" in domesticated geese compared to their wild counterparts. Our study provided novel insights into gene expression features and functions by integrating gene expression patterns across multiple organs and tissues in geese and analyzing population variation. CONCLUSION This accomplishment originates from the discernment of a multitude of selection signals and candidate genes associated with a wide array of traits, thereby markedly enhancing our understanding of the processes underlying domestication and breeding in geese. Moreover, assembling the pan-genome for geese has yielded a comprehensive apprehension of the goose genome, establishing it as an indispensable asset poised to offer innovative viewpoints and make substantial contributions to future geese breeding initiatives.
Collapse
Affiliation(s)
- Guangliang Gao
- Chongqing Academy of Animal Science, Rongchang District, Chongqing, 402460, China
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Rongchang District, Chongqing, 402460, China
| | - Hongmei Zhang
- Department of Cardiovascular Ultrasound and Non-Invasive Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital,University of Electronic Science and Technology of China, Chengdu, 611731, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiangping Ni
- JiguangGene Biotechnology Co., Ltd., Nanjing, 210032, China
| | - Xianzhi Zhao
- Chongqing Academy of Animal Science, Rongchang District, Chongqing, 402460, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Rongchang District, Chongqing, 402460, China
| | - Keshan Zhang
- Chongqing Academy of Animal Science, Rongchang District, Chongqing, 402460, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Rongchang District, Chongqing, 402460, China
| | - Jian Wang
- Jiangsu Agri-Animal Vocational College, Taizhou, 225300, China
| | - Xiangdong Kong
- JiguangGene Biotechnology Co., Ltd., Nanjing, 210032, China.
| | - Qigui Wang
- Chongqing Academy of Animal Science, Rongchang District, Chongqing, 402460, China.
- Chongqing Engineering Research Center of Goose Genetic Improvement, Rongchang District, Chongqing, 402460, China.
- Present Address: Poultry Science Institute, Chongqing Academy of Animal Science, No. 51 Changzhou Avenue, Rongchang District, Chongqing, 402460, P. R. China.
| |
Collapse
|
6
|
Xiang X, Huang X, Wang J, Zhang H, Zhou W, Xu C, Huang Y, Tan Y, Yin Z. Transcriptomic and metabolomic analyses of the ovaries of Taihe black-bone silky fowls at the peak egg-laying and nesting period. Front Genet 2023; 14:1222087. [PMID: 37876591 PMCID: PMC10591096 DOI: 10.3389/fgene.2023.1222087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
The poor reproductive performance of most local Chinese chickens limits the economic benefits and output of related enterprises. As an excellent local breed in China, Taihe black-bone silky fowl is in urgent need of our development and utilization. In this study, we performed transcriptomic and metabolomic analyses of the ovaries of Taihe black-bone silky fowls at the peak egg-laying period (PP) and nesting period (NP) to reveal the molecular mechanisms affecting reproductive performance. In the transcriptome, we identified five key differentially expressed genes (DEGs) that may affect the reproductive performance of Taihe black-bone silky fowl: BCHE, CCL5, SMOC1, CYTL1, and SCIN, as well as three important pathways: the extracellular region, Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction. In the metabolome, we predicted three important ovarian significantly differential metabolites (SDMs): LPC 20:4, Bisphenol A, and Cortisol. By integration analysis of transcriptome and metabolome, we identified three important metabolite-gene pairs: "LPC 20:4-BCHE", "Bisphenol A-SMOC1", and "Cortisol- SCIN". In summary, this study contributes to a deeper understanding of the regulatory mechanism of egg production in Taihe black-bone silky fowl and provides a scientific basis for improving the reproductive performance of Chinese local chickens.
Collapse
Affiliation(s)
- Xin Xiang
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Xuan Huang
- Animal Science College, Zhejiang University, Hangzhou, China
| | | | - Haiyang Zhang
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Wei Zhou
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Chunhui Xu
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Yunyan Huang
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Yuting Tan
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Zhaozheng Yin
- Animal Science College, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Zhao X, Li H, Chen X, Wu Y, Wang L, Li J. Long non-coding RNA MSTRG.5970.28 regulates proliferation and apoptosis of goose follicle granulosa cells via the miR-133a-3p/ANOS1 pathway. Poult Sci 2023; 102:102451. [PMID: 36634463 PMCID: PMC9841053 DOI: 10.1016/j.psj.2022.102451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022] Open
Abstract
The development of follicles in the ovaries is a critical determinant of poultry egg production. There are existing studies on the follicular development patterns in poultry, but the specific regulatory mechanisms still need further study. In a previous study, we identified long non-coding RNA (lncRNA) MSTRG.5970.28, anosmin 1 (ANOS1), and its predicted target miR-133a-3p that may be associated with goose ovary development. However, the function of MSTRG.5970.28 in goose granulosa cells and its regulatory mechanisms affecting granulosa cell proliferation and apoptosis have not been reported. In the present study, MSTRG.5970.28 and miR-133a-3p overexpression and interference vectors were constructed. Combined with reverse-transcription real-time quantitative PCR (RT-qPCR), a dual luciferase activity assay, Cell Counting Kit-8 (CCK-8), and flow cytometric analysis, we investigated the role of the MSTRG.5970.28-miR-133a-3p-ANOS1 axis in goose follicular granulosa cells and the associated regulatory mechanisms. MSTRG.5970.28 was found to be localized in the cytoplasm and its expression was influenced by reproductive hormones. The targeting relationship among MSTRG.5970.28, ANOS1, and miR-133a-3p were verified by a dual luciferase activity assay. CCK-8 and apoptosis assays showed that MSTRG.5970.28 inhibited the proliferation and promoted apoptosis of goose granulosa cells. The regulatory role of miR-133a-3p on granulosa cell proliferation and apoptosis was opposite to MSTRG.5970.28. We found that the proliferative and apoptotic effects of granulosa cells caused by MSTRG.5970.28 overexpression were attenuated by miR-133a-3p. MSTRG.5970.28 functions as a competitive endogenous RNA that regulates ANOS1 expression by sponging miR-133a-3p and thus exerts regulatory functions in granulosa cells. In sum, the present study identified lncRNA MSTRG.5970.28 as associated with goose ovary development, which affects the expression of ANOS1 by targeting miR-133a-3p, thereby influencing the proliferation and apoptosis of goose granulosa cells.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China.
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yingping Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Ling Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jiahui Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
8
|
Liu G, Guo Z, Zhao X, Sun J, Yue S, Li M, Chen Z, Ma Z, Zhao H. Whole Genome Resequencing Identifies Single-Nucleotide Polymorphism Markers of Growth and Reproduction Traits in Zhedong and Zi Crossbred Geese. Genes (Basel) 2023; 14:487. [PMID: 36833414 PMCID: PMC9956059 DOI: 10.3390/genes14020487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The broodiness traits of domestic geese are a bottleneck that prevents the rapid development of the goose industry. To reduce the broodiness of the Zhedong goose and thus improve it, this study hybridized it with the Zi goose, which has almost no broody behavior. Genome resequencing was performed for the purebred Zhedong goose, as well as the F2 and F3 hybrids. The results showed that the F1 hybrids displayed significant heterosis in growth traits, and their body weight was significantly greater than those of the other groups. The F2 hybrids showed significant heterosis in egg-laying traits, and the number of eggs laid was significantly greater than those of the other groups. A total of 7,979,421 single-nucleotide polymorphisms (SNPs) were obtained, and three SNPs were screened. Molecular docking results showed that SNP11 located in the gene NUDT9 altered the structure and affinity of the binding pocket. The results suggested that SNP11 is an SNP related to goose broodiness. In the future, we will use the cage breeding method to sample the same half-sib families to accurately identify SNP markers of growth and reproductive traits.
Collapse
Affiliation(s)
- Guojun Liu
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, China
| | - Zhenhua Guo
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, China
| | - Xiuhua Zhao
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, China
| | - Jinyan Sun
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, China
| | - Shan Yue
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, China
| | - Manyu Li
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, China
| | - Zhifeng Chen
- Heilongjiang Academy of Agricultural Sciences, Qiqihare Branch Academy, No. 2 Heyi Road, Qiqihare 161005, China
| | - Zhigang Ma
- Heilongjiang Academy of Agricultural Sciences, Qiqihare Branch Academy, No. 2 Heyi Road, Qiqihare 161005, China
| | - Hui Zhao
- Liaoning Academy of Agricultural Sciences, No. 84 Dongling Road, Shenyang 110161, China
| |
Collapse
|
9
|
Lin B, Zhou X, Jiang D, Shen X, Ouyang H, Li W, Xu D, Fang L, Tian Y, Li X, Huang Y. Comparative transcriptomic analysis reveals candidate genes for seasonal breeding in the male Lion-Head goose. Br Poult Sci 2023; 64:157-163. [PMID: 36440984 DOI: 10.1080/00071668.2022.2152651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Due to seasonal breeding, geese breeds from Southern China have low egg yield. The genetic makeup underlying performance of local breeds is largely unknown, and few studies have investigated this problem. This study integrated 21 newly generated and 50 publicly existing RNA-seq libraries, representing the hypothalamus, pituitary and testis, to identify candidate genes and importantly related pathways associated with seasonal breeding in male Lion-Head geese.2. In total, 19, 119 and 302 differentially expressed genes (DEGs) were detected in the hypothalamus, pituitary and testis, respectively, of male Lion-Head geese between non-breeding and breeding periods. These genes were significantly involved in the neuropeptide signalling pathway, gland development, neuroactive ligand-receptor interaction, JAK-STAT signalling pathway, cAMP signalling pathway, PI3K-Akt signalling pathway and Foxo signalling pathway.3. By integrating another 50 RNA-seq samples 4, 18 and 40 promising DEGs were confirmed in hypothalamus, pituitary and testis, respectively.4. HOX genes were identified as having important roles in the development of testis between non-breeding and breeding periods of male Lion-Head geese.
Collapse
Affiliation(s)
- B Lin
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - X Zhou
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - D Jiang
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - X Shen
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - H Ouyang
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - W Li
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - D Xu
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - L Fang
- MRC Human Genetics Unit at Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Y Tian
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - X Li
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - Y Huang
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
10
|
Ouyang Q, Hu S, Chen Q, Xin S, He Z, Hu J, Hu B, He H, Liu H, Li L, Wang J. Role of SNPs located in the exon 9 of ATAPA1 gene on goose egg production. Poult Sci 2023; 102:102488. [PMID: 36774712 PMCID: PMC9943896 DOI: 10.1016/j.psj.2023.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The meat and egg of goose is one of the main components of human food supply. The improvement of goose egg production is particularly important for the increasing human population. However, limited information is available about the effective molecular markers and mechanisms of egg production in goose. In this study, we jointly utilized the data of genome resequencing in different egg production Sichuan white goose and transcriptome at different follicle development stages to identified the molecular markers and mechanisms of egg production. The coefficient of variation of individual egg production in Sichuan white goose population is 0.42 to 0.49. Fifty individuals with the highest (laying 365 days egg number, LEN365 = 79-145) and 50 individuals with the lowest (LEN365 = 8-48) egg production were divided into high and low egg production groups. Based on whole-genome sequencing data of the selected samples, 36 SNPs (annotation novel.12.470, CELF2, ATP1A1, KCNJ6, RAB4A, UST, REV3L, DHX15, CAVN2, SLC5A9, Cldn5, MRPS23, and Tspan2) associated with the LEN365 were identified, involving multiple pathways such as metabolism and endocrinology. Notably, 5 SNPs located in the exon9 of ATP1A1 were identified by GWAS analysis. The association analysis with LEN365 showed the phenotypic variance explained of this haplotype consisting of 5 SNPs is 20.51%. Through transcriptome data analysis, we found the expression of ATP1A1 in the granular layers was increased in the stage of small yellow follicle to large yellow follicle (LYF) and LYF to F5, while decreased in F2 to F1. For the first time, we report the haplotype region formed by 5 SNPS on exon9 of ATP1A1 is associated with egg production in goose and involved in follicle selection and maturation processes.
Collapse
Affiliation(s)
- Qingyuan Ouyang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Shenqiang Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Qingliang Chen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Shuai Xin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Zhiyu He
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jiwei Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Bo Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Hua He
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Hehe Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Liang Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jiwen Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China.
| |
Collapse
|
11
|
Wang Y, Wang Y, Wang L, Wei B, Lv X, Huang Y, Zhang H, Chen W. Dietary supplementation with Clostridium butyricum and its ferment substance improves the egg quality and ovarian function in laying hens from 50 to 58 weeks of age. Anim Sci J 2023; 94:e13877. [PMID: 37818858 DOI: 10.1111/asj.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 10/13/2023]
Abstract
The current study was conducted to explore the effects of dietary Clostridium butyricum (C. butyricum) and fermented calcium (Ca) butyrate produced by C. butyricum on the performance and egg quality of post-peak laying. A total of 384 50-week-old hens were fed a basal diet, the basal diet with 300 mg/kg of fermented Ca butyrate or 1 × 109 CFU/kg C. butyricum for 8 weeks. Hens received a C. butyricum exhibited higher yolk properties, albumen height, and Haugh unit. A diet with fermented Ca butyrate or C. butyricum increased the egg mass and the pre-grade yellow follicle number. RNA-sequencing (RNA-seq) data showed that these observations were associated with cytokine-cytokine receptor interaction and intestinal immune status. Accordingly, when compared with the basal diet group, Ca butyrate and C. butyricum addition decreased serum pro-inflammatory cytokine levels and increased the concentration of immunoglobulin A, along with improved intestinal barrier. In addition, dietary C. butyricum inclusion induced a higher abundance of Ruminococcaceae and Lachnospiraceae at the family level. In summary, dietary fermented Ca butyrate or C. butyricum supplementation improved egg quality and ovarian function, which might be related to the enhanced intestinal barrier and immunity in post-peak laying hens.
Collapse
Affiliation(s)
- Yongshuai Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yilu Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Leilei Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Bin Wei
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Xiangyun Lv
- Charoen Pokphand Group Co., Ltd., Zhumadian, Henan, China
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
12
|
Effects of the breeder age on the egg yield and egg quality traits of Landes geese (Anser anser). Trop Anim Health Prod 2022; 54:387. [DOI: 10.1007/s11250-022-03387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
|
13
|
Chen X, Huang K, Hu S, Lan G, Gan X, Gao S, Deng Y, Hu J, Li L, Hu B, He H, Liu H, Xia L, Wang J. Integrated Transcriptome and Metabolome Analysis Reveals the Regulatory Mechanisms of FASN in Geese Granulosa Cells. Int J Mol Sci 2022; 23:ijms232314717. [PMID: 36499045 PMCID: PMC9736573 DOI: 10.3390/ijms232314717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
FASN plays a critical role in lipid metabolism, which is involved in regulating ovarian follicular development. However, the molecular mechanisms of how FASN regulate the function of ovarian follicular cells still remain elusive. In this study, by overexpression or interference of FASN in pre-hierarchical follicle granulosa cells (phGCs) and hierarchical follicle granulosa cells (hGCs), we analyzed their effects on the granulosa cell transcriptome and metabolome profiles using RNA-Seq and LC-MS/MS, respectively. The results showed that overexpression of FASN promoted proinflammatory factors expression by activating TLR3/IRF7 and TLR3/NF-κB pathways in phGCs, but only by activating TLR3/IRF7 pathways in hGCs. Then, necroptosis and apoptosis were triggered through the JAK/STAT1 pathway (induced by inflammatory factors) and BAK/caspase-7 pathway, respectively. The combined analysis of the metabolome and transcriptome revealed that FASN affected the demand of GCs for 5-hydroxytryptamine (5-HT) by activating the neuroactive ligand-receptor interaction pathway in two categorized GCs and only altering the metabolic pathway of tryptophan in phGCs, and ultimately participated in regulating the physiological function of geese GCs. Taken together, this study showed that the mechanisms of FASN regulating the physiological function of geese phGCs and hGCs were similar, but they also had some different characteristics.
Collapse
Affiliation(s)
- Xi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Kailiang Huang
- Key Laboratory of Agricultural Information Engineering of Sichuan Province, College of Information Engineering, Sichuan Agricultural University, Yaan 625014, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Lan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shanyan Gao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Xia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
14
|
He Z, Chen Q, Ouyang Q, Hu J, Shen Z, Hu B, Hu S, He H, Li L, Liu H, Wang J. Transcriptomic analysis of the thyroid and ovarian stroma reveals key pathways and potential candidate genes associated with egg production in ducks. Poult Sci 2022; 102:102292. [PMID: 36435165 PMCID: PMC9700033 DOI: 10.1016/j.psj.2022.102292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
The importance of thyroid-related genes has been repeatedly mentioned in the transcriptome studies of poultry with different laying performance, yet there are few systematic studies to unravel the regulatory mechanisms of the thyroid-ovary axis in the poultry egg production process. In this study, we compared the transcriptome profiles in the thyroid and ovarian stroma between high egg production (GP) and low egg production (DP) ducks, and then revealed the pathways and candidate genes involved in the process. We identified 1,114 and 733 differentially expressed genes (DEGs) in the thyroid and ovarian stroma, separately. The Gene Ontology (GO) analysis showed that a total of 504 and 189 GO terms were identified in the thyroid and ovarian stroma (P < 0.05). Three common GO terms were identified from the top 5 GO terms with the highest significant level in two tissues, including extracellular space, calcium ion binding, and integral component of plasma membrane. The enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that 15 and 14 KEGG pathways were significantly (P < 0.05) enriched in the thyroid and ovarian stroma, respectively. And, there were 8 common pathways, including neuroactive ligand-receptor interaction, calcium signaling pathway, ECM-receptor interaction, PPAR signaling pathway, melanogenesis, wnt signaling pathway, vascular smooth muscle contraction, and cytokine-cytokine receptor interaction. Notably, the neuroactive ligand-receptor interaction pathway was the most significantly enriched by the DEGs both in the thyroid and ovarian stroma. The interaction among DEGs enriched in the neuroactive ligand-receptor interaction and ECM-receptor interaction suggested that the thyroid may regulate ovarian development by these genes. Through integrated analysis of the protein-protein interaction (PPI) network and KEGG pathway maps, 9 key DEGs (PTH, THBS2, THBS4, CD36, ADIPOQ, ACSL6, PRKAA2, CRH, and PCK1) were identified, which could play crucial roles in the thyroid to regulate ovarian function and then affect egg-laying performance between GP and DP. This study serves as a basis to explore the molecular mechanism of the thyroid affecting ovarian function and egg production in female ducks and may help to identify molecular markers that can be used for duck genetic selection.
Collapse
|
15
|
Ren J, Yang F, Ding N, Mo J, Guo J. Transcriptomic responses to cytotoxic drug cisplatin in water flea Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103964. [PMID: 36028164 DOI: 10.1016/j.etap.2022.103964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/07/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Cytotoxic drugs have been recognized by the European Union as the potential threat in the aquatic environment. As a typical cytotoxic drug, effects of long-term exposure to cisplatin at the environmentally relevant concentrations on the crustacean health and its molecular mechanism remain undetermined. In this study, the growth and reproduction of Daphnia magna resulting from cisplatin exposure were initially assessed. While the phenotypes were not altered in 2 μg L-1, 20 μg L-1, and 200 μg L-1 treatment groups, cisplatin at 500 µg L-1 significantly reduced the offspring number to 8-13 neonates in each brood, which was lower than 13-27 neonates in the control group. In addition to the delay in the time of first pregnancy, the body length was decreased by approximate 12.13% at day 7. Meanwhile, all daphnids died after exposure to 500 µg L-1 cisplatin for 17 days. Transcriptome profiling bioassays were performed for 10 days to explore the alternation at the molecular level. Briefly, 980 (257 up- and 723 down-regulated), 429 (182 up- and 247 down-regulated) and 1984 (616 up-regulated and 1368 down-regulated) genes were differentially expressed (adj p < 0.05) in low (2 μg L-1), medium (200 μg L-1) and high (500 μg L-1) cisplatin treatment groups, respectively. Differentially expressed genes were primarily enriched in the digestion and absorption, nerve conduction, endocrine interference, and circulatory related pathways. Specifically, the down-regulated digestive secretion and nutrient absorption and neuronal conduction pathways may lead to insufficient energy supply involved in growth and reproduction, and hinder ovarian development and cell growth. Down-regulation of ovarian steroids and relaxin signaling pathways may be related to the reduction of offspring number and delayed pregnancy, and reduced body length of D. magna may attribute to the enrichment of insulin secretion pathway. In addition, the death of D. magna may result from the reduced expression of genes in cardiomyocyte contraction and apoptosome processes. Taken together, this study revealed the potential toxic mechanism of cisplatin in a model water flea.
Collapse
Affiliation(s)
- Jingya Ren
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Fangshe Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Ning Ding
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
16
|
Transcriptomics and Metabolomics Analysis of the Ovaries of High and Low Egg Production Chickens. Animals (Basel) 2022; 12:ani12162010. [PMID: 36009602 PMCID: PMC9404446 DOI: 10.3390/ani12162010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The ovarian tissues of different breeds of hens during egg production were investigated through transcriptomics and metabolomics to provide a more comprehensive understanding of the molecular mechanisms of the ovary during egg production. Four genes involved in egg production were predicted by the transcriptome, including P2RX1, INHBB, VIPR2, and FABP3, and several close metabolites associated with reproduction were identified in the metabolome, including 17α-hydroxyprogesterone, iloprost, spermidine and adenosine. Correlation analysis of specific differential genes and differential metabolites identified important gene-metabolite pairs VIPR2–Spermidine and P2RX1–Spermidine in the reproductive process. Abstract Egg production is a pivotal indicator for evaluating the fertility of poultry, and the ovary is an essential organ for egg production and plays an indispensable role in poultry production and reproduction. In order to investigate different aspects of egg production mechanisms in different poultry, in this study we performed a metabolomic analysis of the transcriptomic combination of the ovaries of two chicken breeds, the high-production Ninghai indigenous chickens and the low-production Wuliangshan black-boned chickens, to analyze the biosynthesis and potential key genes and metabolic pathways in the ovaries during egg production. We predicted four genes in the transcriptomic that are associated with egg production, namely P2RX1, INHBB, VIPR2, and FABP3, and identified three important pathways during egg production, “Calcium signaling pathway”, “Neuroactive ligand–receptor interaction” and “Cytokine–cytokine receptor interaction”, respectively. In the metabolomic 149 significantly differential metabolites were identified, 99 in the negative model and 50 in the positive model, of which 17α-hydroxyprogesterone, iloprost, spermidine, and adenosine are important metabolites involved in reproduction. By integrating transcriptomics and metabolomics, the correlation between specific differential genes and differential metabolites identified important gene-metabolite pairs “VIPR2-Spermidine” and “P2RX1-Spermidine” in egg production. In conclusion, these data provide a better understanding of the molecular differences between the ovaries of low- and high-production hens and provide a theoretical basis for further studies on the mechanics of poultry egg production.
Collapse
|
17
|
Ouyang Q, Hu S, Tang B, Hu B, Hu J, He H, Li L, Wang J. Comparative Transcriptome Analysis Provides Novel Insights into the Effect of Lipid Metabolism on Laying of Geese. Animals (Basel) 2022; 12:ani12141775. [PMID: 35883321 PMCID: PMC9311715 DOI: 10.3390/ani12141775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The importance of lipid metabolism in the egg production of poultry has been widely reported. Meanwhile, geese have lower egg production and unique lipid metabolism patterns compared with chicken and duck. It is of great significance to further improve egg laying performance to explore the differences of fat metabolism and the molecular mechanisms in geese with different egg laying performance. This study compared the phenotypic differences of liver and abdominal fat, as well as the transcriptome level differences of liver, abdominal fat, and ovarian stroma among high-, low-, and no-egg production groups. The results reveal that lipid metabolism regulated by the circadian rhythm of the liver may directly or indirectly affect ovarian function through the inflammation and hormone secretion of abdominal fat. Abstract The lower egg production of geese (20~60 eggs per year) compared with chicken and duck limits the development of the industry, while the yolk weight and fatty liver susceptibility of geese was higher than that of other poultry. Therefore, the relationship between lipid metabolism and the laying performance of geese remains to be explored. Phenotypically, we observed that the liver fat content of the high-, low-, and no-egg production groups decreased in turn, while the abdominal fat weight increased in turn. For transcriptional regulation, the KEGG pathways related to lipid metabolism were enriched in all pairwise comparisons of abdominal fat and liver through functional analysis. However, some KEGG pathways related to inflammation and the circadian rhythm pathway were enriched by DEGs only in abdominal fat and the liver, respectively. The DEGs in ovarian stroma among different groups enriched some KEGG pathways related to ovarian steroidogenesis and cell adhesion. Our research reveals that lipid metabolism regulated by the circadian rhythm of the liver may directly or indirectly affect ovarian function through the inflammation and hormone secretion of abdominal fat. These results offer new insights into the regulation mechanisms of goose reproductive traits.
Collapse
|
18
|
Bello SF, Adeola AC, Nie Q. The study of candidate genes in the improvement of egg production in ducks – a review. Poult Sci 2022; 101:101850. [PMID: 35544958 PMCID: PMC9108513 DOI: 10.1016/j.psj.2022.101850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/01/2022] Open
Abstract
Duck is the second-largest poultry species aside from chicken. The rate of egg production is a major determinant of the economic income of poultry farmers. Among the reproductive organs, the ovary is a major part of the female reproductive system which is highly important for egg production. Based on the importance of this organ, several studies have been carried out to identify candidate genes at the transcriptome level, and also the expression level of these genes at different tissues or egg-laying conditions, and single nucleotide polymorphism (SNPs) of genes associated with egg production in duck. In this review, expression profile and association study analyses at SNPs level of different candidate genes with egg production traits of duck were highlighted. Furthermore, different studies on transcriptome analysis, Quantitative Trait Loci (QTL) mapping, and Genome Wide Association Study (GWAS) approach used to identify potential candidate genes for egg production in ducks were reported. This review would widen our knowledge on molecular markers that are associated or have a positive correlation to improving egg production in ducks, for the increasing world populace.
Collapse
|
19
|
Bhavana K, Foote DJ, Srikanth K, Balakrishnan CN, Prabhu VR, Sankaralingam S, Singha HS, Gopalakrishnan A, Nagarajan M. Comparative transcriptome analysis of Indian domestic duck reveals candidate genes associated with egg production. Sci Rep 2022; 12:10943. [PMID: 35768515 PMCID: PMC9243076 DOI: 10.1038/s41598-022-15099-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
Egg production is an important economic trait and a key indicator of reproductive performance in ducks. Egg production is regulated by several factors including genes. However the genes involved in egg production in duck remain unclear. In this study, we compared the ovarian transcriptome of high egg laying (HEL) and low egg laying (LEL) ducks using RNA-Seq to identify the genes involved in egg production. The HEL ducks laid on average 433 eggs while the LEL ducks laid 221 eggs over 93 weeks. A total of 489 genes were found to be significantly differentially expressed out of which 310 and 179 genes were up and downregulated, respectively, in the HEL group. Thirty-eight differentially expressed genes (DEGs), including LHX9, GRIA1, DBH, SYCP2L, HSD17B2, PAR6, CAPRIN2, STC2, and RAB27B were found to be potentially related to egg production and folliculogenesis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that DEGs were enriched for functions related to glutamate receptor activity, serine-type endopeptidase activity, immune function, progesterone mediated oocyte maturation and MAPK signaling. Protein-protein interaction network analysis (PPI) showed strong interaction between 32 DEGs in two distinct clusters. Together, these findings suggest a mix of genetic and immunological factors affect egg production, and highlights candidate genes and pathways, that provides an understanding of the molecular mechanisms regulating egg production in ducks and in birds more broadly.
Collapse
Affiliation(s)
- Karippadakam Bhavana
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Dustin J Foote
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Krishnamoorthy Srikanth
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Vandana R Prabhu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.,ICAR-Central Marine Fisheries Research Institute, Ernakulam North PO, Kochi, Kerala, 682 018, India
| | - Shanmugam Sankaralingam
- Department of Poultry Science, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, 680 651, India
| | - Hijam Surachandra Singha
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | | | - Muniyandi Nagarajan
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
20
|
Comparative transcriptomics in the hypothalamic-pituitary-gonad axis of mammals and poultry. Genomics 2022; 114:110396. [DOI: 10.1016/j.ygeno.2022.110396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
|
21
|
Tang B, Hu S, Ouyang Q, Wu T, Lu Y, Hu J, Hu B, Li L, Wang J. Comparative transcriptome analysis identifies crucial candidate genes and pathways in the hypothalamic-pituitary-gonadal axis during external genitalia development of male geese. BMC Genomics 2022; 23:136. [PMID: 35168567 PMCID: PMC8848681 DOI: 10.1186/s12864-022-08374-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/08/2022] [Indexed: 01/25/2023] Open
Abstract
Background All birds reproduce via internal fertilization, but only ~3% of male birds possess the external genitalia that allows for intromission. Waterfowl (e.g., duck and goose) are representatives of them, and the external genitalia development of male geese is directly related to mating ability. Notably, some male geese show abnormal external genitalia development during ontogenesis. However, until now little is known about the molecular mechanisms of the external genitalia development in goose. In the present study, comparative transcriptomic analyses were performed on the hypothalamus, pituitary gland, testis, and external genitalia isolated from the 245-day-old male Tianfu meat geese showing normal (NEGG, n = 3) and abnormal (AEGG, n = 3) external genitals in order to provide a better understanding of the mechanisms controlling the development of the external genitalia in aquatic bird species. Results There were 107, 284, 2192, and 1005 differentially expressed genes (DEGs) identified in the hypothalamus, pituitary gland, testis and external genitalia between NEGG and AEGG. Functional enrichment analysis indicated that the DEGs identified in the hypothalamus were mainly enriched in the ECM-receptor interaction pathway. The ECM-receptor interaction, focal adhesion, and neuroactive ligand-receptor interaction pathways were significantly enriched by the DEGs in the pituitary gland. In the testis, the DEGs were enriched in the neuroactive ligand-receptor interaction, cell cycle, oocyte meiosis, and purine metabolism. In the external genitalia, the DEGs were enriched in the metabolic, neuroactive ligand-receptor interaction, and WNT signaling pathways. Furthermore, through integrated analysis of protein-protein interaction (PPI) network and co-expression network, fifteen genes involved in the neuroactive ligand-receptor interaction and WNT signaling pathways were identified, including KNG1, LPAR2, LPAR3, NPY, PLCB1, AVPR1B, GHSR, GRM3, HTR5A, FSHB, FSHR, WNT11, WNT5A, WIF1, and WNT7B, which could play crucial roles in the development of goose external genitalia. Conclusions This study is the first systematically comparing the hypothalamus, pituitary gland, testis, and external genitalia transcriptomes of male geese exhibiting normal and abnormal external genitals. Both bioinformatic analysis and validation experiments indicated that the neuroactive ligand-receptor interaction pathway could regulate the WNT signaling pathway through PLCB1 to control male goose external genitalia development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08374-2.
Collapse
Affiliation(s)
- Bincheng Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Tianhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Yao Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
22
|
Lagarrigue S, Lorthiois M, Degalez F, Gilot D, Derrien T. LncRNAs in domesticated animals: from dog to livestock species. Mamm Genome 2021; 33:248-270. [PMID: 34773482 PMCID: PMC9114084 DOI: 10.1007/s00335-021-09928-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Animal genomes are pervasively transcribed into multiple RNA molecules, of which many will not be translated into proteins. One major component of this transcribed non-coding genome is the long non-coding RNAs (lncRNAs), which are defined as transcripts longer than 200 nucleotides with low coding-potential capabilities. Domestic animals constitute a unique resource for studying the genetic and epigenetic basis of phenotypic variations involving protein-coding and non-coding RNAs, such as lncRNAs. This review presents the current knowledge regarding transcriptome-based catalogues of lncRNAs in major domesticated animals (pets and livestock species), covering a broad phylogenetic scale (from dogs to chicken), and in comparison with human and mouse lncRNA catalogues. Furthermore, we describe different methods to extract known or discover novel lncRNAs and explore comparative genomics approaches to strengthen the annotation of lncRNAs. We then detail different strategies contributing to a better understanding of lncRNA functions, from genetic studies such as GWAS to molecular biology experiments and give some case examples in domestic animals. Finally, we discuss the limitations of current lncRNA annotations and suggest research directions to improve them and their functional characterisation.
Collapse
Affiliation(s)
| | - Matthias Lorthiois
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France
| | - Fabien Degalez
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, 35590, Saint-Gilles, France
| | - David Gilot
- CLCC Eugène Marquis, INSERM, Université Rennes, UMR_S 1242, 35000, Rennes, France
| | - Thomas Derrien
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France.
| |
Collapse
|
23
|
Bello SF, Xu H, Guo L, Li K, Zheng M, Xu Y, Zhang S, Bekele EJ, Bahareldin AA, Zhu W, Zhang D, Zhang X, Ji C, Nie Q. Hypothalamic and ovarian transcriptome profiling reveals potential candidate genes in low and high egg production of white Muscovy ducks (Cairina moschata). Poult Sci 2021; 100:101310. [PMID: 34298381 PMCID: PMC8322464 DOI: 10.1016/j.psj.2021.101310] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 01/16/2023] Open
Abstract
In China, the low egg production rate is a major challenge to Muscovy duck farmers. Hypothalamus and ovary play essential role in egg production of birds. However, there are little or no reports from these tissues to identify potential candidate genes responsible for egg production in White Muscovy ducks. A total of 1,537 laying ducks were raised; the egg production traits which include age at first egg (days), number of eggs at 300 d, and number of eggs at 59 wk were recorded. Moreover, 4 lowest (LP) and 4 highest producing (HP) were selected at 59 wk of age, respectively. To understand the mechanism of egg laying regulation, we sequenced the hypothalamus and ovary transcriptome profiles in LP and HP using RNA-Seq. The results showed that the number of eggs at 300 d and number of eggs at 59 wk in the HP were significantly more (P < 0.001) than the LP ducks. In total, 106.98G clean bases were generated from 16 libraries with an average of 6.68G clean bases for each library. Further analysis showed 569 and 2,259 differentially expressed genes (DEGs) were identified in the hypothalamus and ovary between LP and HP, respectively. The KEGG pathway enrichment analysis revealed 114 and 139 pathways in the hypothalamus and ovary, respectively which includes Calcium signaling pathway, ECM-receptor interaction, Focal adhesion, MAPK signaling pathway, Apoptosis and Apelin signaling pathways that are involved in egg production. Based on the GO terms and KEGG pathways results, 10 potential candidate genes (P2RX1, LPAR2, ADORA1, FN1, AKT3, ADCY5, ADCY8, MAP3K8, PXN, and PTTG1) were identified to be responsible for egg production. Further, protein-protein interaction was analyzed to show the relationship between these candidate genes. Therefore, this study provides useful information on transcriptome of hypothalamus and ovary of LP and HP Muscovy ducks.
Collapse
Affiliation(s)
- Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Kan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ming Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Yibin Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Siyu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Endashaw Jebessa Bekele
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ali Abdalla Bahareldin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Weijian Zhu
- Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Congliang Ji
- Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China.
| |
Collapse
|
24
|
Cádiz MI, López ME, Díaz-Domínguez D, Cáceres G, Marin-Nahuelpi R, Gomez-Uchida D, Canales-Aguirre CB, Orozco-terWengel P, Yáñez JM. Detection of selection signatures in the genome of a farmed population of anadromous rainbow trout (Oncorhynchus mykiss). Genomics 2021; 113:3395-3404. [PMID: 34339816 DOI: 10.1016/j.ygeno.2021.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022]
Abstract
Domestication processes and artificial selection are likely to leave signatures that can be detected at a molecular level in farmed rainbow trout (Oncorhynchus mykiss). These signatures of selection are genomic regions that contain functional genetic variants conferring a higher fitness to their bearers. We genotyped 749 rainbow trout from a commercial population using a rainbow trout Axiom 57 K SNP array panel and identified putative genomic regions under selection using the pcadapt, Composite Likelihood Ratio (CLR) and Integrated Haplotype Score (iHS) methods. After applying quality-control pipelines and statistical analyses, we detected 12, 96 and 16 SNPs putatively under selection, associated with 96, 781 and 115 candidate genes, respectively. Several of these candidate genes were associated with growth, early development, reproduction, behavior and immune system traits. In addition, some of the SNPs were found in interesting regions located in autosomal inversions on Omy05 and Omy20. These findings could represent a genome-wide map of selection signatures in farmed rainbow trout and could be important in explaining domestication and selection for genetic traits of commercial interest.
Collapse
Affiliation(s)
- María I Cádiz
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - María E López
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | | | - Giovanna Cáceres
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile
| | - Rodrigo Marin-Nahuelpi
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - Daniel Gomez-Uchida
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - Cristian B Canales-Aguirre
- Centro i~Mar, Universidad de Los Lagos, Camino Chinquihue 6 km, Puerto Montt, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | | | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile.
| |
Collapse
|
25
|
Molecular Cloning and Functional Characterization of Three 5-HT Receptor Genes ( HTR1B, HTR1E, and HTR1F) in Chickens. Genes (Basel) 2021; 12:genes12060891. [PMID: 34207786 PMCID: PMC8230051 DOI: 10.3390/genes12060891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) signaling system is involved in a variety of physiological functions, including the control of cognition, reward, learning, memory, and vasoconstriction in vertebrates. Contrary to the extensive studies in the mammalian system, little is known about the molecular characteristics of the avian serotonin signaling network. In this study, we cloned and characterized the full-length cDNA of three serotonin receptor genes (HTR1B, HTR1E and HTR1F) in chicken pituitaries. Synteny analyses indicated that HTR1B, HTR1E and HTR1F were highly conserved across vertebrates. Cell-based luciferase reporter assays showed that the three chicken HTRs were functional, capable of binding their natural ligands (5-HT) or selective agonists (CP94253, BRL54443, and LY344864) and inhibiting intracellular cAMP production in a dose-dependent manner. Moreover, activation of these receptors could stimulate the MAPK/ERK signaling cascade. Quantitative real-time PCR analyses revealed that HTR1B, HTR1E and HTR1F were primarily expressed in various brain regions and the pituitary. In cultured chicken pituitary cells, we found that LY344864 could significantly inhibit the secretion of PRL stimulated by vasoactive intestinal peptide (VIP) or forskolin, revealing that HTR1F might be involved in the release of prolactin in chicken. Our findings provide insights into the molecular mechanism and facilitate a better understanding of the serotonergic modulation via HTR1B, HTR1E and HTR1F in avian species.
Collapse
|
26
|
Gao G, Gao D, Zhao X, Xu S, Zhang K, Wu R, Yin C, Li J, Xie Y, Hu S, Wang Q. Genome-Wide Association Study-Based Identification of SNPs and Haplotypes Associated With Goose Reproductive Performance and Egg Quality. Front Genet 2021; 12:602583. [PMID: 33777090 PMCID: PMC7994508 DOI: 10.3389/fgene.2021.602583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 01/10/2023] Open
Abstract
Geese are one of the most economically important waterfowl. However, the low reproductive performance and egg quality of geese hinder the development of the goose industry. The identification and application of genetic markers may improve the accuracy of beneficial trait selection. To identify the genetic markers associated with goose reproductive performance and egg quality traits, we performed a genome-wide association study (GWAS) for body weight at birth (BBW), the number of eggs at 48 weeks of age (EN48), the number of eggs at 60 weeks of age (EN60) and egg yolk color (EYC). The GWAS acquired 2.896 Tb of raw sequencing data with an average depth of 12.44× and identified 9,279,339 SNPs. The results of GWAS showed that 26 SNPs were significantly associated with BBW, EN48, EN60, and EYC. Moreover, five of these SNPs significantly associated with EN48 and EN60 were in a haplotype block on chromosome 35 from 4,512,855 to 4,541,709 bp, oriented to TMEM161A and another five SNPs significantly correlated to EYC were constructed in haplotype block on chromosome 5 from 21,069,009 to 21,363,580, which annotated by TMEM161A, CALCR, TFPI2, and GLP1R. Those genes were enriched in epidermal growth factor-activated receptor activity, regulation of epidermal growth factor receptor signaling pathway. The SNPs, haplotype markers, and candidate genes identified in this study can be used to improve the accuracy of marker-assisted selection for the reproductive performance and egg quality traits of geese. In addition, the candidate genes significantly associated with these traits may provide a foundation for better understanding the mechanisms underlying reproduction and egg quality in geese.
Collapse
Affiliation(s)
- Guangliang Gao
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xianzhi Zhao
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | | | - Keshan Zhang
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Rui Wu
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Chunhui Yin
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Jing Li
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Youhui Xie
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qigui Wang
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| |
Collapse
|
27
|
Hu Z, Liu J, Cao J, Zhang H, Liu X. Ovarian transcriptomic analysis of black Muscovy duck at the early, peak and late egg-laying stages. Gene 2021; 777:145449. [PMID: 33482277 DOI: 10.1016/j.gene.2021.145449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
Ovarian development is a complex process involving many genes and pathways. A well-developed ovary is essential for poultry to keep high egg production and egg fertility. In order to better understand the mechanism of egg production performance, a comparative transcriptomic analysis was performed on ovaries of black Muscovy ducks at the early (BE), peak (BP) and late laying (BL) stages. 1683 DEGs were identified from BL-vs-BE, BL-vs-BP and BP-vs-BE, and the up-regulated genes were 41, 835, 260, the down-regulated genes were 60, 255, 730, respectively. Besides, there were 32, 20 and 424 DEGs co-expressed in the two comparison groups, and 11 DEGs were co-expressed in the three comparison groups. HOXA10, HtrA3, StAR, ZP2 and TAT were found to be involved in the regulation of ovarian development were significantly differentially expressed at different laying stages, which helped to regulate ovarian maturation and egg production. Moreover, we discovered several important functional pathways, such as steroid hormone biosynthesis and ovarian steroidogenesis, that appear to be much more active in the BP ovary compared to those of the BE and BL. Furthermore, 17 coding and 244 non-coding new transcripts were detected in the three comparison groups, the gene structures were optimized and the gene annotation informations were improved. These findings will provide a solid foundation on ovarian development in black Muscovy ducks and other poultry animals at different laying stages, and help to understand the complex molecular and cellular mechanisms of ovary.
Collapse
Affiliation(s)
- Zhigang Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Junting Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Huilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
28
|
Chen S, Guo X, He X, Di R, Zhang X, Zhang J, Wang X, Chu M. Insight Into Pituitary lncRNA and mRNA at Two Estrous Stages in Small Tail Han Sheep With Different FecB Genotypes. Front Endocrinol (Lausanne) 2021; 12:789564. [PMID: 35178025 PMCID: PMC8844552 DOI: 10.3389/fendo.2021.789564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
The pituitary is a remarkably dynamic organ with roles in hormone (FSH and LH) synthesis and secretion. In animals with the FecB (fecundity Booroola) mutation, the pituitary experiences hormone fluctuations during the follicular-luteal transition, which is implicated in the expression and regulation of many genes and regulators. Long non-coding RNAs (lncRNAs) are a novel type of regulatory factors for the reproductive process. Nevertheless, the expression patterns of lncRNAs and their roles in FecB-mediated follicular development and ovulation remain obscure. Thus, we profiled the pituitary transcriptome during the follicular (F, 45 h after evacuation vaginal sponges) and luteal (L, 216 h after evacuation vaginal sponges) phases in FecB-mutant homozygous (BB) and wild-type (WW) Small Tail Han sheep. We identified 78 differentially expressed genes (DEGs) and 41 differentially expressed lncRNAs (DELs) between BB_F and BB_L, 32 DEGs and 26 DELs between BB_F and WW_F, 16 DEGs and 29 DELs between BB_L and WW_L, and 50 DEGs and 18 DELs between WW_F and WW_L. The results of real-time quantitative PCR (RT-qPCR) correlated well with the transcriptome data. In both the follicular and luteal phases, DEGs (GRID2, glutamate ionotropic receptor delta type subunit 2; ST14, ST14 transmembrane serine protease matriptase) were enriched in hormone synthesis, secretion, and action. MSTRG.47470 and MSTRG.101530 were the trans-regulated elements of ID1 (inhibitor of DNA binding 3, HLH protein) and the DEG ID3 (inhibitor of DNA binding 3, HLH protein), and EEF2 (eukaryotic translation elongation factor 2), respectively; these factors might be involved in melatonin and peptide hormone secretion. In the FecB-mediated follicular phase, MSTRG.125392 targeted seizure-related 6 homolog like (SEZ6L), and MSTRG.125394 and MSTRG.83276 targeted the DEG KCNQ3 (potassium voltage-gated channel subfamily Q member 3) in cis, while MSTRG.55861 targeted FKBP4 (FKBP prolyl isomerase 4) in trans. In the FecB-mediated luteal phase, LOC105613905, MSTRG.81536, and MSTRG.150434 modulated TGFB1, SMAD3, OXT, respectively, in trans. We postulated that the FecB mutation in pituitary tissue elevated the expression of certain genes associated with pituitary development and hormone secretion. Furthermore, this study provides new insights into how the pituitary regulates follicular development and ovulation, illustrated by the effect of the FecB mutation.
Collapse
Affiliation(s)
- Si Chen
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Guo
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiangyu Wang, ; Mingxing Chu,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiangyu Wang, ; Mingxing Chu,
| |
Collapse
|
29
|
Fan R, Cao Z, Chen M, Wang H, Liu M, Gao M, Luan X. Effects of the FABP4 gene on steroid hormone secretion in goose ovarian granulosa cells. Br Poult Sci 2020; 62:81-91. [PMID: 32875818 DOI: 10.1080/00071668.2020.1817325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. To investigate the physiological role of FABP4 in the goose ovary, this study determined the effects of overexpressing and siRNA interfering FABP4 on progesterone (P4) and oestradiol (E2) production in granulosa cells. Measurements were made by ELISA, real-time qRT-PCR and western blotting. 2. The concentrations of P4 and E2 in the FABP4 overexpression granulosa cells were increased compared to the control group (P > 0.05 for P4; P < 0.05 for E2). Likewise, the mRNA and protein expression levels of CYP11A1 and CYP19A1 were significantly higher than in the control group (P < 0.05 or P < 0.001). Conversely, the concentrations of P4 and E2 in the FABP4 silencing granulosa cells were significantly decreased compared with the control group (P < 0.001). Likewise, the mRNA and protein expression levels of CYP11A1 and CYP19A1 were significantly lower than in the control group (P < 0.001, or P < 0.01). 3. The study indicated that the FABP4 gene may regulate steroid hormone secretion and the expression of the steroidogenic genes in geese ovarian granulosa cells. These results support the possibility that the FABP4 gene mediates ovarian steroid hormone biosynthesis function and reproduction in geese.
Collapse
Affiliation(s)
- R Fan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University , Shenyang, P.R. China
| | - Z Cao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University , Shenyang, P.R. China
| | - M Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University , Shenyang, P.R. China
| | - H Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University , Shenyang, P.R. China
| | - M Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University , Shenyang, P.R. China
| | - M Gao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University , Shenyang, P.R. China
| | - X Luan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University , Shenyang, P.R. China
| |
Collapse
|