1
|
Polizel GHG, Diniz WJS, Cesar ASM, Ramírez-Zamudio GD, Cánovas A, Dias EFF, Fernandes AC, Prati BCT, Furlan É, Pombo GDV, Santana MHDA. Impacts of prenatal nutrition on metabolic pathways in beef cattle: an integrative approach using metabolomics and metagenomics. BMC Genomics 2025; 26:359. [PMID: 40211121 PMCID: PMC11983759 DOI: 10.1186/s12864-025-11545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/28/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND This study assessed the long-term metabolic effects of prenatal nutrition in Nelore bulls through an integrated analysis of metabolome and microbiome data to elucidate the interconnected host-microbe metabolic pathways. To this end, a total of 126 cows were assigned to three supplementation strategies during pregnancy: NP (control)- only mineral supplementation; PP- protein-energy supplementation during the last trimester; and FP- protein-energy supplementation throughout pregnancy. At the end of the finishing phase, blood, fecal, and ruminal fluid samples were collected from 63 male offspring. The plasma underwent targeted metabolomics analysis, and fecal and ruminal fluid samples were used to perform 16 S rRNA gene sequencing. Metabolite and ASV (amplicon sequence variant) co-abundance networks were constructed for each treatment using the weighted gene correlation network analysis (WGCNA) framework. Significant modules (p ≤ 0.1) were selected for over-representation analyses to assess the metabolic pathways underlying the metabolome (MetaboAnalyst 6.0) and the microbiome (MicrobiomeProfiler). To explore the metabolome-metagenome interplay, correlation analyses between host metabolome and microbiome were performed. Additionally, a holistic integration of metabolic pathways was performed (MicrobiomeAnalyst 2.0). RESULTS A total of one and two metabolite modules associated with the NP and FP were identified, respectively. Regarding fecal microbiome, three, one, and two modules for the NP, PP, and FP were identified, respectively. The rumen microbiome demonstrated two modules correlated with each of the groups under study. Metabolite and microbiome enrichment analyses revealed the main metabolic pathways associated with lipid and protein metabolism, and regulatory mechanisms. The correlation analyses performed between the host metabolome and fecal ASVs revealed 13 and 12 significant correlations for NP and FP, respectively. Regarding the rumen, 16 and 17 significant correlations were found for NP and FP, respectively. The NP holistic analysis was mainly associated with amino acid and methane metabolism. Glycerophospholipid and polyunsaturated fatty acid metabolism were over-represented in the FP group. CONCLUSIONS Prenatal nutrition significantly affected the plasma metabolome, fecal microbiome, and ruminal fluid microbiome of Nelore bulls, providing insights into key pathways in protein, lipid, and methane metabolism. These findings offer novel discoveries about the molecular mechanisms underlying the effects of prenatal nutrition. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Guilherme Henrique Gebim Polizel
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Wellison J S Diniz
- Department of Animal Sciences, College of Agriculture, Auburn University, Auburn, AL, 36849, USA
| | - Aline Silva Mello Cesar
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias 11, Piracicaba, SP, 13418-900, Brazil
| | - German D Ramírez-Zamudio
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Evandro Fernando Ferreira Dias
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Arícia Christofaro Fernandes
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Barbara Carolina Teixeira Prati
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Édison Furlan
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Gabriela do Vale Pombo
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Miguel Henrique de Almeida Santana
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil.
| |
Collapse
|
2
|
Min H, Jing Z, Zhu Y, Luo K, Zheng S, Tang H, Wu Y, Xuan R, Huang Y, Li J, Xiong R, Fang X, Wang L, Gong Y, Miao J, Tan H, Wang Y, Wu L, Ouyang J, Yan X, Hao C. Whole genome sequencing revealed genetic structure, domestication, and selection of Chinese indigenous ducks. Int J Biol Macromol 2025; 306:141724. [PMID: 40043989 DOI: 10.1016/j.ijbiomac.2025.141724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/15/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
The genetic architecture and domestication history of Chinese indigenous ducks, particularly those with distinct traits like the Longsheng duck (LSD), are not well characterized. This study used whole-genome resequencing data from 540 ducks across 30 populations to explore the genetic diversity and structure of these ducks. Our findings suggest extensive interspecific hybridization between mallard and spot-billed duck. Comparing with other Chinese ducks, LSD is a distinct breed with moderate genetic diversity. Selective signal analysis identified several key genes impacting neural development, fat metabolism, immunity, and circadian rhythms like SLC25A20 and PER2. These genes showed strong selective pressures that parallelled other domestication processes. Additionally, EDNRB2 was identified as a potential gene influencing the unique coloration of LSD's plumage, bill, and webbed feet, associated with distinct mutations in non-coding regions. Comparative analysis with other indigenous breeds further pinpointed genes associated with LSD-specific traits, including plumage color, reproductive capabilities, and fat deposition, such as MITF, SPATA2, EIF2S2, PLIN3, ATP1B1, and CCDC80. Our findings clarify the population genetics of Chinese indigenous ducks. They also highlight key genes and mutations that shape the unique characteristics of LSD. These insights pave the way for further research into the genetic resources and domestication patterns of Chinese ducks.
Collapse
Affiliation(s)
- Huang Min
- College of Animal Sciences & Technology, Zhejiang A&F University, Hangzhou, China
| | - Zhou Jing
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yihao Zhu
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Keyi Luo
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Sumei Zheng
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Hongbo Tang
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yan Wu
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Rui Xuan
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yuxuan Huang
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiawei Li
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Rui Xiong
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xinyan Fang
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Lei Wang
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yujie Gong
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Junjie Miao
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Hongli Tan
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yanan Wang
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Liping Wu
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jing Ouyang
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xueming Yan
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| | - Chen Hao
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
3
|
de Carvalho FE, Ferraz JBS, Pedrosa VB, Matos EC, Eler JP, Silva MR, Guimarães JD, Bussiman F, Silva BCA, Mulim HA, Rocha AO, Araujo AC, Wen H, Campos GS, Brito LF. Genetic parameters and genome-wide association studies including the X chromosome for various reproduction and semen quality traits in Nellore cattle. BMC Genomics 2025; 26:26. [PMID: 39794685 PMCID: PMC11720523 DOI: 10.1186/s12864-024-11193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The profitability of the beef industry is directly influenced by the fertility rate and reproductive performance of both males and females, which can be improved through selective breeding. When performing genomic analyses, genetic markers located on the X chromosome have been commonly ignored despite the X chromosome being one of the largest chromosomes in the cattle genome. Therefore, the primary objectives of this study were to: (1) estimate variance components and genetic parameters for eighteen male and five female fertility and reproductive traits in Nellore cattle including X chromosome markers in the analyses; and (2) perform genome-wide association studies and functional genomic analyses to better understand the genetic background of male and female fertility and reproductive performance traits in Nellore cattle. RESULTS The percentage of the total direct heritability (h2total) explained by the X chromosome markers (h2x) ranged from 3 to 32% (average: 16.4%) and from 9 to 67% (average: 25.61%) for female reproductive performance and male fertility traits, respectively. Among the traits related to breeding soundness evaluation, the overall bull and semen evaluation and semen quality traits accounted for the highest proportion of h2x relative to h2total with an average of 39.5% and 38.75%, respectively. The total number of significant genomic markers per trait ranged from 7 (seminal vesicle width) to 43 (total major defects). The number of significant markers located on the X chromosome ranged from zero to five. A total of 683, 252, 694, 382, 61, and 77 genes overlapped with the genomic regions identified for traits related to female reproductive performance, semen quality, semen morphology, semen defects, overall bulls' fertility evaluation, and overall semen evaluation traits, respectively. The key candidate genes located on the X chromosome are PRR32, STK26, TMSB4X, TLR7, PRPS2, SMS, SMARCA1, UTP14A, and BCORL1. The main gene ontology terms identified are "Oocyte Meiosis", "Progesterone Mediated Oocyte Maturation", "Thermogenesis", "Sperm Flagellum", and "Innate Immune Response". CONCLUSIONS Our findings indicate the key role of genes located on the X chromosome on the phenotypic variability of male and female reproduction and fertility traits in Nellore cattle. Breeding programs aiming to improve these traits should consider adding the information from X chromosome markers in their genomic analyses.
Collapse
Affiliation(s)
- Felipe E de Carvalho
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil.
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA.
| | - José Bento S Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Elisangela C Matos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Joanir P Eler
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Marcio R Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - José D Guimarães
- Department of Veterinary Medicine, Federal University of Vicosa, Vicosa, MG, Brazil
| | - Fernando Bussiman
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Barbara C A Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Artur Oliveira Rocha
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Hui Wen
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Gabriel S Campos
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Igoshin AV, Romashov GA, Yurchenko AA, Yudin NS, Larkin DM. Scans for Signatures of Selection in Genomes of Wagyu and Buryat Cattle Breeds Reveal Candidate Genes and Genetic Variants for Adaptive Phenotypes and Production Traits. Animals (Basel) 2024; 14:2059. [PMID: 39061521 PMCID: PMC11274160 DOI: 10.3390/ani14142059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Past and ongoing selection shapes the genomes of livestock breeds. Identifying such signatures of selection allows for uncovering the genetic bases of affected phenotypes, including economically important traits and environmental adaptations, for the further improvement of breed genetics to respond to climate and economic challenges. Turano-Mongolian cattle are a group of taurine breeds known for their adaptation to extreme environmental conditions and outstanding production performance. Buryat Turano-Mongolian cattle are among the few breeds adapted to cold climates and poor forage. Wagyu, on the other hand, is famous for high productivity and unique top-quality marbled meat. We used hapFLK, the de-correlated composite of multiple signals (DCMS), PBS, and FST methods to search for signatures of selection in their genomes. The scans revealed signals in genes related to cold adaptation (e.g., STAT3, DOCK5, GSTM3, and CXCL8) and food digestibility (SI) in the Buryat breed, and growth and development traits (e.g., RBFOX2 and SHOX2) and marbling (e.g., DGAT1, IQGAP2, RSRC1, and DIP2B) in Wagyu. Several putatively selected genes associated with reproduction, immunity, and resistance to pathogens were found in both breed genomes. The results of our work could be used for creating new productive adapted breeds or improving the extant breeds.
Collapse
Affiliation(s)
- Alexander V. Igoshin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Grigorii A. Romashov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Andrey A. Yurchenko
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, 94800 Villejuif, France
| | - Nikolay S. Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
5
|
Hosseinzadeh S, Masoudi AA. Investigating the expression of fertility-regulating LncRNAs in multiparous and uniparous Shal ewe's ovaries. Genome 2024; 67:78-89. [PMID: 37983732 DOI: 10.1139/gen-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Sheep is the primary source of animal protein in Iran. Birth type is one of the significant features that determine total meat output. Little is known about how long non-coding RNAs (LncRNAs) affect litter size. The purpose of this research is to investigate the DE-LncRNAs in ovarian tissue between multiparous and uniparous Shal ewes. Through bioinformatics analyses, LncRNAs with variable expression levels between ewes were discovered. Target genes were annotated using the DAVID database, and STRING and Cytoscape software were used to evaluate their interactions. The expression levels of 148 LncRNAs were different in the multiparous and uniparous ewe groups (false discovery rate (FDR) < 0.05). Eight biological process terms, nine cellular component terms, 10 molecular function terms, and 38 KEGG pathways were significant (FDR < 0.05) in the GO analysis. One of the most significant processes impacting fertility is mitogen-activated protein kinase (MAPK) signaling pathway, followed by oocyte meiosis, gonadotropin-releasing hormone signaling pathway, progesterone-mediated oocyte maturation, oxytocin signaling pathway, and cAMP signaling pathway. ENSOARG00000025710, ENSOARG00000025667, ENSOARG00000026034, and ENSOARG00000026632 are LncRNAs that may affect litter size and fertility. The most crucial hub genes include MAPK1, BRD2, GAK, RAP1B, FGF2, RAP1B, and RAP1B. We hope that this study will encourage researchers to further investigate the effect of LncRNAs on fertility.
Collapse
Affiliation(s)
- Shahram Hosseinzadeh
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Nishihara K, van Niekerk J, Innes D, He Z, Cánovas A, Guan LL, Steele M. Transcriptome profiling revealed that key rumen epithelium functions change in relation to short-chain fatty acids and rumen epithelium-attached microbiota during the weaning transition. Genomics 2023; 115:110664. [PMID: 37286013 DOI: 10.1016/j.ygeno.2023.110664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
This study aims to characterize the functional changes of the rumen epithelium associated with ruminal short-chain fatty acid (SCFA) concentration and epithelium-attached microbes during the weaning transition in dairy calves. Ruminal SCFA concentrations were determined, and transcriptome and microbiota profiling in biopsied rumen papillae were obtained from Holstein calves before and after weaning using RNA- and amplicon sequencing. Metabolic pathway analysis showed that pathways related to SCFA metabolism and cell apoptosis were up- and down-regulated postweaning, respectively. Functional analysis showed that genes related to SCFA absorption, metabolism, and protective roles against oxidative stress were positively correlated with ruminal SCFA concentrations. The relative abundance of epithelium-attached Rikenellaceae RC9 gut group and Campylobacter was positively correlated with genes involved in SCFA absorption and metabolism, suggesting that these microbes can cooperatively affect host functions. Future research should examine the contribution of attenuated apoptosis on rumen epithelial functional shifts during the weaning transition.
Collapse
Affiliation(s)
- Koki Nishihara
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Jolet van Niekerk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - David Innes
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Michael Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada.
| |
Collapse
|
7
|
Nishihara K, van Niekerk J, He Z, Innes D, Guan LL, Steele M. Reduction in mucosa thickness is associated with changes in immune function in the colon mucosa during the weaning transition in Holstein bull dairy calves. Genomics 2023; 115:110680. [PMID: 37454938 DOI: 10.1016/j.ygeno.2023.110680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
This study aims to characterize changes in the structure and the molecules related to immune function in the colon mucosa in dairy calves during the weaning transition (weaned at week 6 of age). Colon mucosa thickness, measured at week 5 to 8 and 12 of age, decreased for 2 weeks after weaning, but then recovered. Colon mucosa's transcriptome profiling at week 5, 7, and 12 of age was obtained using RNA-sequencing. Functional analysis showed that pathways related to immune function were up-regulated postweaning. A weighted gene co-expression network analysis identified 17 immune function related genes, expressed higher postweaning, which were negatively correlated with colon mucosa thickness, suggesting that these genes may be involved in colon mucosa inflammation and recovery from mucosa thickness decrement during the weaning transition. As such, it is important to determine the function of immune cells in the colon mucosa during the weaning transition in dairy calves.
Collapse
Affiliation(s)
- Koki Nishihara
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Jolet van Niekerk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - David Innes
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Michael Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada.
| |
Collapse
|
8
|
Pallotti S, Picciolini M, Antonini M, Renieri C, Napolioni V. Genome-wide scan for runs of homozygosity in South American Camelids. BMC Genomics 2023; 24:470. [PMID: 37605116 PMCID: PMC10440933 DOI: 10.1186/s12864-023-09547-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Alpaca (Vicugna pacos), llama (Lama glama), vicugna (Vicugna vicugna) and guanaco (Lama guanicoe), are the camelid species distributed over the Andean high-altitude grasslands, the Altiplano, and the Patagonian arid steppes. Despite the wide interest on these animals, most of the loci under selection are still unknown. Using whole-genome sequencing (WGS) data we investigated the occurrence and the distribution of Runs Of Homozygosity (ROHs) across the South American Camelids (SACs) genome to identify the genetic relationship between the four species and the potential signatures of selection. RESULTS A total of 37 WGS samples covering the four species was included in the final analysis. The multi-dimensional scaling approach showed a clear separation between the four species; however, admixture analysis suggested a strong genetic introgression from vicugna and llama to alpaca. Conversely, very low genetic admixture of the guanaco with the other SACs was found. The four species did not show significant differences in the number, length of ROHs (100-500 kb) and genomic inbreeding values. Longer ROHs (> 500 kb) were found almost exclusively in alpaca. Seven overlapping ROHs were shared by alpacas, encompassing nine loci (FGF5, LOC107034918, PRDM8, ANTXR2, LOC102534792, BSN, LOC116284892, DAG1 and RIC8B) while nine overlapping ROHs were found in llama with twenty-five loci annotated (ERC2, FZD9, BAZ1B, BCL7B, LOC116284208, TBL2, MLXIPL, PHF20, TRNAD-AUC, LOC116284365, RBM39, ARFGEF2, DCAF5, EXD2, HSPB11, LRRC42, LDLRAD1, TMEM59, LOC107033213, TCEANC2, LOC102545169, LOC116278408, SMIM15, NDUFAF2 and RCOR1). Four overlapping ROHs, with three annotated loci (DLG1, KAT6B and PDE4D) and three overlapping ROHs, with seven annotated genes (ATP6V1E1, BCL2L13, LOC116276952, BID, KAT6B, LOC116282667 and LOC107034552), were detected for vicugna and guanaco, respectively. CONCLUSIONS The signatures of selection revealed genomic areas potentially selected for production traits as well as for natural adaptation to harsh environment. Alpaca and llama hint a selection driven by environment as well as by farming purpose while vicugna and guanaco showed selection signals for adaptation to harsh environment. Interesting, signatures of selection on KAT6B gene were identified for both vicugna and guanaco, suggesting a positive effect on wild populations fitness. Such information may be of interest to further ecological and animal production studies.
Collapse
Affiliation(s)
- Stefano Pallotti
- Genomic And Molecular Epidemiology (GAME) Lab, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy.
| | | | - Marco Antonini
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Roma, Italy
| | - Carlo Renieri
- School of Pharmacy and Health Products, University of Camerino, Camerino, Italy
| | - Valerio Napolioni
- Genomic And Molecular Epidemiology (GAME) Lab, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
9
|
Rocha RDFB, Garcia AO, Otto PI, da Silva MVB, Martins MF, Machado MA, Panetto JCDC, Guimarães SEF. Runs of homozygosity and signatures of selection for number of oocytes and embryos in the Gir Indicine cattle. Mamm Genome 2023:10.1007/s00335-023-09989-w. [PMID: 37000236 DOI: 10.1007/s00335-023-09989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Runs of homozygosity (ROH) and signatures of selection are the results of selection processes in livestock species that have been shown to affect several traits in cattle. The aim of the current work was to verify the profile of ROH and inbreeding depression in the number of total (TO) and viable oocytes (VO) and the number of embryos (EMBR) in Gir Indicine cattle. In addition, we aim to identify signatures of selection, genes, and enriched regions between Gir subpopulations sorted by breeding value for these traits. The genotype file contained 2093 animals and 420,718 SNP markers. Breeding values used to sort Gir animals were previously obtained. ROH and signature of selection analyses were performed using PLINK software, followed by ROH-based (FROH) and pedigree-based inbreeding (Fped) and a search for genes and their functions. An average of 50 ± 8.59 ROHs were found per animal. ROHs were separated into classes according to size, ranging from 1 to 2 Mb (ROH1-2Mb: 58.17%), representing ancient inbreeding, ROH2-4Mb (22.74%), ROH4-8Mb (11.34%), ROH8-16Mb (5.51%), and ROH>16Mb (2.24%). Combining our results, we conclude that the increase in general FROH and Fped significantly decreases TO and VO; however, in different chromosomes traits can increase or decrease with FROH. In the analysis for signatures of selection, we identified 15 genes from 47 significant genomic regions, indicating differences in populations with high and low breeding value for the three traits.
Collapse
Affiliation(s)
| | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Rio Grande Do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Diniz WJS, Banerjee P, Rodning SP, Dyce PW. Machine Learning-Based Co-Expression Network Analysis Unravels Potential Fertility-Related Genes in Beef Cows. Animals (Basel) 2022; 12:2715. [PMID: 36230456 PMCID: PMC9559512 DOI: 10.3390/ani12192715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Reproductive failure is still a challenge for beef producers and a significant cause of economic loss. The increased availability of transcriptomic data has shed light on the mechanisms modulating pregnancy success. Furthermore, new analytical tools, such as machine learning (ML), provide opportunities for data mining and uncovering new biological events that explain or predict reproductive outcomes. Herein, we identified potential biomarkers underlying pregnancy status and fertility-related networks by integrating gene expression profiles through ML and gene network modeling. We used public transcriptomic data from uterine luminal epithelial cells of cows retrospectively classified as pregnant (P, n = 25) and non-pregnant (NP, n = 18). First, we used a feature selection function from BioDiscML and identified SERPINE3, PDCD1, FNDC1, MRTFA, ARHGEF7, MEF2B, NAA16, ENSBTAG00000019474, and ENSBTAG00000054585 as candidate biomarker predictors of pregnancy status. Then, based on co-expression networks, we identified seven genes significantly rewired (gaining or losing connections) between the P and NP networks. These biomarkers were co-expressed with genes critical for uterine receptivity, including endometrial tissue remodeling, focal adhesion, and embryo development. We provided insights into the regulatory networks of fertility-related processes and demonstrated the potential of combining different analytical tools to prioritize candidate genes.
Collapse
|
11
|
Keel BN, Lindholm-Perry AK. Recent developments and future directions in meta-analysis of differential gene expression in livestock RNA-Seq. Front Genet 2022; 13:983043. [PMID: 36199583 PMCID: PMC9527320 DOI: 10.3389/fgene.2022.983043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Decreases in the costs of high-throughput sequencing technologies have led to continually increasing numbers of livestock RNA-Seq studies in the last decade. Although the number of studies has increased dramatically, most livestock RNA-Seq experiments are limited by cost to a small number of biological replicates. Meta-analysis procedures can be used to integrate and jointly analyze data from multiple independent studies. Meta-analyses increase the sample size, which in turn increase both statistical power and robustness of the results. In this work, we discuss cutting edge approaches to combining results from multiple independent RNA-Seq studies to improve livestock transcriptomics research. We review currently published RNA-Seq meta-analyses in livestock, describe many of the key issues specific to RNA-Seq meta-analysis in livestock species, and discuss future perspectives.
Collapse
|
12
|
de Souza Fonseca PA, Suárez-Vega A, Cánovas A. Unrevealing functional candidate genes for bovine fertility through RNA sequencing meta-analysis and regulatory elements networks of co-expressed genes and lncRNAs. Funct Integr Genomics 2022; 22:1361-1376. [PMID: 36001276 DOI: 10.1007/s10142-022-00893-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/16/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
The high genetic heterogeneity and environmental effects of subfertility in livestock species make the elucidation of the genetic mechanisms associated with reproductive efficiency a difficult task. Network and co-expression network meta-analyses were applied alongside genetic variant calling and long non-coding RNA (lncRNA) characterization to identify functionally relevant target genes and regulatory subnetworks associated with fertility in dairy cattle. In total, 505 lncRNAs (441 previously annotated in the bovine reference genome ARS-UCD 1.2 and 64 novel lncRNAs) were identified. Seven differentially expressed genes between high-fertile (HF) and sub-fertile (SF) Holstein cows were identified in the network meta-analysis (CA5A, ENSBTAG00000051149, ENSBTAG00000003272, DEFB7, DIO2, TRPV3, and COL4A4). Additionally, seven functional candidate differentially co-expressed (DcoExp) modules with a differential regulatory pattern (|z-score|>2) were identified between HF and SF cows. The functional candidate genes and DcoExp modules identified were associated with fertility relevant processes such as the regulation of embryonic implantation and proliferation, interaction and molecule transfer between the fetus and the cow, and the immune system. These results help to better understand the genetic mechanisms associated with reproductive efficiency in dairy cattle through the identification of potential biomarkers and genetic variants associated with differentially expressed regulatory gene and lncRNAs regulatory element networks.
Collapse
Affiliation(s)
- Pablo Augusto de Souza Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Aroa Suárez-Vega
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
13
|
Vahedi SM, Salek Ardestani S, Pahlevan Afshari K, Ghoreishifar SM, Moghaddaszadeh-Ahrabi S, Banabazi MH, Brito LF. Genome-Wide Selection Signatures and Human-Mediated Introgression Events in Bos taurus indicus-influenced Composite Beef Cattle. Front Genet 2022; 13:844653. [PMID: 35719394 PMCID: PMC9201998 DOI: 10.3389/fgene.2022.844653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic introgression from interbreeding hybridization of European Bos taurus taurus (EBT) and Indian Bos taurus indicus (IBI) cattle breeds have been widely used to combine the climatic resilience of the IBI cattle and the higher productivity of EBT when forming new composite beef cattle (CB) populations. The subsequent breeding strategies have shifted their initial genomic compositions. To uncover population structure, signatures of selection, and potential introgression events in CB populations, high-density genotypes [containing 492,954 single nucleotide polymorphisms (SNPs) after the quality control] of 486 individuals from 15 cattle breeds, including EBT, IBI, and CB populations, along with two Bos grunniens genotypes as outgroup were used in this study. Then, in-depth population genetics analyses were performed for three CB breeds of Beefmaster, Brangus, and Santa Gertrudis. Neighbor-joining, principal components, and admixture analyses confirmed the historical introgression of EBT and IBI haplotypes into CB breeds. The fdM statistics revealed that only 12.9% of CB populations' genetic components are of IBI origin. The results of signatures of selection analysis indicated different patterns of selection signals in the three CB breeds with primary pressure on pathways involved in protein processing and stress response in Beefmaster, cell proliferation regulation and immune response in Brangus, and amino acids and glucose metabolisms in Santa Gertrudis. An average of >90% of genomic regions underlying selection signatures were of EBT origin in the studied CB populations. Investigating the CB breeds' genome allows the estimation of EBT and IBI ancestral proportions and the locations within the genome where either taurine or indicine origin alleles are under selective pressure. Such findings highlight various opportunities to control the selection process more efficiently and explore complementarity at the genomic level in CB populations.
Collapse
Affiliation(s)
- Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Siavash Salek Ardestani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kian Pahlevan Afshari
- Department of Animal Sciences, Islamic Azad University, Varamin-Pishva Branch, Varamin, Iran
| | - Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sima Moghaddaszadeh-Ahrabi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Mohammad Hossein Banabazi
- Department of Animal Breeding and Genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Luiz Fernando Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
14
|
Fonseca PAS, Schenkel FS, Cánovas A. Genome-wide association study using haplotype libraries and repeated measures model to identify candidate genomic regions for stillbirth in Holstein cattle. J Dairy Sci 2022; 105:1314-1326. [PMID: 34998559 DOI: 10.3168/jds.2021-20936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022]
Abstract
Reduced fertility is one of the main causes of economic losses on dairy farms, resulting in economic losses estimated at $938 per stillbirth case in Holstein herds. The identification of genomic regions associated with stillbirth could help to develop better management and breeding strategies aimed to reduce the frequency of undesirable gestation outcomes. Here, 10,570 cows and 50,541 birth records were used to perform a haplotype-based GWAS. A total of 41 significantly associated pseudo-SNPs (haplotypes within haplotype blocks converted to a binary classification) were identified after Bonferroni adjustment for multiple tests. A total of 117 positional candidate genes were annotated within or close (in a 200-kb interval) to significant pseudo-SNPs (haplotype blocks). The guilt-by-association functional prioritization identified 31 potential functional candidate genes for reproductive performance out of the 117 positional candidate genes annotated. These genes play crucial roles in biological processes associated with pregnancy persistence, fetus development, immune response, among others. These results helped us to better understand the genetic basis of stillbirth in dairy cattle and may be useful for the prediction of stillbirth in Holstein cattle, helping to reduce the related economic losses caused by this phenotype.
Collapse
Affiliation(s)
- P A S Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - F S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
15
|
Livernois AM, Mallard BA, Cartwright SL, Cánovas A. Heat stress and immune response phenotype affect DNA methylation in blood mononuclear cells from Holstein dairy cows. Sci Rep 2021; 11:11371. [PMID: 34059695 PMCID: PMC8166884 DOI: 10.1038/s41598-021-89951-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/29/2021] [Indexed: 11/08/2022] Open
Abstract
Heat stress negatively affects health and production in cows. Examining the cellular response to heat stress could reveal underlying protective molecular mechanisms associated with superior resilience and ultimately enable selection for more resilient cattle. This type of investigation is increasingly important as future predictions for the patterns of heat waves point to increases in frequency, severity, and duration. Cows identified as high immune responders based on High Immune Response technology (HIR) have lower disease occurrence compared to their average and low immune responder herd-mates. In this study, our goal was to identify epigenetic differences between high and low immune responder cows in response to heat stress. We examined genome-wide DNA methylation of blood mononuclear cells (BMCs) isolated from high and low cows, before and after in vitro heat stress. We identified differential methylation of promoter regions associated with a variety of biological processes including immune function, stress response, apoptosis, and cell signalling. The specific differentially methylated promoter regions differed between samples from high and low cows, and results revealed pathways associated with cellular protection during heat stress.
Collapse
Affiliation(s)
- A M Livernois
- Deptartment of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
| | - B A Mallard
- Deptartment of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - S L Cartwright
- Deptartment of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
16
|
Sweett H, Fonseca PAS, Suárez-Vega A, Livernois A, Miglior F, Cánovas A. Genome-wide association study to identify genomic regions and positional candidate genes associated with male fertility in beef cattle. Sci Rep 2020; 10:20102. [PMID: 33208801 PMCID: PMC7676258 DOI: 10.1038/s41598-020-75758-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Fertility plays a key role in the success of calf production, but there is evidence that reproductive efficiency in beef cattle has decreased during the past half-century worldwide. Therefore, identifying animals with superior fertility could significantly impact cow-calf production efficiency. The objective of this research was to identify candidate regions affecting bull fertility in beef cattle and positional candidate genes annotated within these regions. A GWAS using a weighted single-step genomic BLUP approach was performed on 265 crossbred beef bulls to identify markers associated with scrotal circumference (SC) and sperm motility (SM). Eight windows containing 32 positional candidate genes and five windows containing 28 positional candidate genes explained more than 1% of the genetic variance for SC and SM, respectively. These windows were selected to perform gene annotation, QTL enrichment, and functional analyses. Functional candidate gene prioritization analysis revealed 14 prioritized candidate genes for SC of which MAP3K1 and VIP were previously found to play roles in male fertility. A different set of 14 prioritized genes were identified for SM and five were previously identified as regulators of male fertility (SOD2, TCP1, PACRG, SPEF2, PRLR). Significant enrichment results were identified for fertility and body conformation QTLs within the candidate windows. Gene ontology enrichment analysis including biological processes, molecular functions, and cellular components revealed significant GO terms associated with male fertility. The identification of these regions contributes to a better understanding of fertility associated traits and facilitates the discovery of positional candidate genes for future investigation of causal mutations and their implications.
Collapse
Affiliation(s)
- H Sweett
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - P A S Fonseca
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Suárez-Vega
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Livernois
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - F Miglior
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Cánovas
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
17
|
Yan Z, Huang H, Freebern E, Santos DJA, Dai D, Si J, Ma C, Cao J, Guo G, Liu GE, Ma L, Fang L, Zhang Y. Integrating RNA-Seq with GWAS reveals novel insights into the molecular mechanism underpinning ketosis in cattle. BMC Genomics 2020; 21:489. [PMID: 32680461 PMCID: PMC7367229 DOI: 10.1186/s12864-020-06909-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/13/2020] [Indexed: 01/12/2023] Open
Abstract
Background Ketosis is a common metabolic disease during the transition period in dairy cattle, resulting in long-term economic loss to the dairy industry worldwide. While genetic selection of resistance to ketosis has been adopted by many countries, the genetic and biological basis underlying ketosis is poorly understood. Results We collected a total of 24 blood samples from 12 Holstein cows, including 4 healthy and 8 ketosis-diagnosed ones, before (2 weeks) and after (5 days) calving, respectively. We then generated RNA-Sequencing (RNA-Seq) data and seven blood biochemical indicators (bio-indicators) from leukocytes and plasma in each of these samples, respectively. By employing a weighted gene co-expression network analysis (WGCNA), we detected that 4 out of 16 gene-modules, which were significantly engaged in lipid metabolism and immune responses, were transcriptionally (FDR < 0.05) correlated with postpartum ketosis and several bio-indicators (e.g., high-density lipoprotein and low-density lipoprotein). By conducting genome-wide association signal (GWAS) enrichment analysis among six common health traits (ketosis, mastitis, displaced abomasum, metritis, hypocalcemia and livability), we found that 4 out of 16 modules were genetically (FDR < 0.05) associated with ketosis, among which three were correlated with postpartum ketosis based on WGCNA. We further identified five candidate genes for ketosis, including GRINA, MAF1, MAFA, C14H8orf82 and RECQL4. Our phenome-wide association analysis (Phe-WAS) demonstrated that human orthologues of these candidate genes were also significantly associated with many metabolic, endocrine, and immune traits in humans. For instance, MAFA, which is involved in insulin secretion, glucose response, and transcriptional regulation, showed a significantly higher association with metabolic and endocrine traits compared to other types of traits in humans. Conclusions In summary, our study provides novel insights into the molecular mechanism underlying ketosis in cattle, and highlights that an integrative analysis of omics data and cross-species mapping are promising for illustrating the genetic architecture underpinning complex traits.
Collapse
Affiliation(s)
- Ze Yan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hetian Huang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ellen Freebern
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Daniel J A Santos
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Dongmei Dai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingfang Si
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chong Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jie Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Gang Guo
- Beijing Sunlon Livestock Development Co Ltd., Beijing, 100076, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Yi Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|