1
|
Morito T, Watamura N, Sasaguri H, Tomita T, Higuchi M, Okano H, Sasaki E, Saido TC. Experimental basis for generating nonhuman primate models of frontotemporal dementia and Alzheimer's disease. J Alzheimers Dis 2025; 104:955-962. [PMID: 40025729 DOI: 10.1177/13872877251321116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
To our knowledge, no reports have described nonhuman primate (NHP) models of frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) that do not depend on an overexpression paradigm. Based on our recent success in generating single human MAPT knock-in mouse models of FTDP-17, we describe the experimental basis for generating knock-in marmoset models of FTDP-17. In addition, successful generation of mutant PSEN1 knock-in marmoset models lacking exon 9 (PSEN1-Δ9) of Alzheimer's disease (AD) indicates that we will be able to reconstitute two major pathological features of AD, i.e., amyloid plaques and neurofibrillary tangles, in an accelerated manner by combining these models.
Collapse
Affiliation(s)
| | - Naoto Watamura
- RIKEN Center for Brain Science, Wako, Japan
- UK Dementia Research Institute, University College London, London, UK
| | | | - Taisuke Tomita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Higuchi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hideyuki Okano
- RIKEN Center for Brain Science, Wako, Japan
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Erika Sasaki
- Central Institute for Experimental Medicine and Life Science, Kawasaki, Kanagawa, Japan
| | | |
Collapse
|
2
|
Ahmadzada B, Felgendreff P, Minshew AM, Amiot BP, Nyberg SL. Producing Human Livers From Human Stem Cells Via Blastocyst Complementation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 31:100537. [PMID: 38854436 PMCID: PMC11160964 DOI: 10.1016/j.cobme.2024.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The need for organ transplants exceeds donor organ availability. In the quest to solve this shortage, the most remarkable area of advancement is organ production through the use of chimeric embryos, commonly known as blastocyst complementation. This technique involves the combination of different species to generate chimeras, where the extent of donor cell contribution to the desired tissue or organ can be regulated. However, ethical concerns arise with the use of brain tissue in such chimeras. Furthermore, the ratio of contributed cells to host animal cells in the chimeric system is low in the production of chimeras associated with cell apoptosis. This review discusses the latest innovations in blastocyst complementation and highlights the progress made in creating organs for transplant.
Collapse
Affiliation(s)
- Boyukkhanim Ahmadzada
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Philipp Felgendreff
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Anna M Minshew
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Bruce P Amiot
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Scott L Nyberg
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Bayurova E, Zhitkevich A, Avdoshina D, Kupriyanova N, Kolyako Y, Kostyushev D, Gordeychuk I. Common Marmoset Cell Lines and Their Applications in Biomedical Research. Cells 2023; 12:2020. [PMID: 37626830 PMCID: PMC10453182 DOI: 10.3390/cells12162020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Common marmosets (Callithrix jacchus; CMs) are small New World primates widely used in biomedical research. Early stages of such research often include in vitro experiments which require standardized and well-characterized CM cell cultures derived from different tissues. Despite the long history of laboratory work with CMs and high translational potential of such studies, the number of available standardized, well-defined, stable, and validated CM cell lines is still small. While primary cells and immortalized cell lines are mostly used for the studies of infectious diseases, biochemical research, and targeted gene therapy, the main current applications of CM embryonic stem cells and induced pluripotent stem cells are regenerative medicine, stem cell research, generation of transgenic CMs, transplantology, cell therapy, reproductive physiology, oncology, and neurodegenerative diseases. In this review we summarize the data on the main advantages, drawbacks and research applications of CM cell lines published to date including primary cells, immortalized cell lines, lymphoblastoid cell lines, embryonic stem cells, and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Alla Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Daria Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Natalya Kupriyanova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| | - Yuliya Kolyako
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119435 Moscow, Russia;
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| |
Collapse
|
4
|
Han HJ, Powers SJ, Gabrielson KL. The Common Marmoset-Biomedical Research Animal Model Applications and Common Spontaneous Diseases. Toxicol Pathol 2022; 50:628-637. [PMID: 35535728 PMCID: PMC9310150 DOI: 10.1177/01926233221095449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Marmosets are becoming more utilized in biomedical research due to multiple advantages including (1) a nonhuman primate of a smaller size with less cost for housing, (2) physiologic similarities to humans, (3) translatable hepatic metabolism, (4) higher numbers of litters per year, (5) genome is sequenced, molecular reagents are available, (6) immunologically similar to humans, (7) transgenic marmosets with germline transmission have been produced, and (8) are naturally occurring hematopoietic chimeras. With more use of marmosets, disease surveillance over a wide range of ages of marmosets has been performed. This has led to a better understanding of the disease management of spontaneous diseases that can occur in colonies. Knowledge of clinical signs and histologic lesions can assist in maximizing the colony's health, allowing for improved outcomes in translational studies within biomedical research. Here, we describe some basic husbandry, biology, common spontaneous diseases, and animal model applications for the common marmoset in biomedical research.
Collapse
Affiliation(s)
- Hyo-Jeong Han
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- University of Ulsan, College of Medicine, Seoul, Korea
| | - Sarah J Powers
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Malukiewicz J, Boere V, de Oliveira MAB, D'arc M, Ferreira JVA, French J, Housman G, de Souza CI, Jerusalinsky L, R de Melo F, M Valença-Montenegro M, Moreira SB, de Oliveira E Silva I, Pacheco FS, Rogers J, Pissinatti A, Del Rosario RCH, Ross C, Ruiz-Miranda CR, Pereira LCM, Schiel N, de Fátima Rodrigues da Silva F, Souto A, Šlipogor V, Tardif S. An Introduction to the Callithrix Genus and Overview of Recent Advances in Marmoset Research. ILAR J 2021; 61:110-138. [PMID: 34933341 DOI: 10.1093/ilar/ilab027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/12/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
We provide here a current overview of marmoset (Callithrix) evolution, hybridization, species biology, basic/biomedical research, and conservation initiatives. Composed of 2 subgroups, the aurita group (C aurita and C flaviceps) and the jacchus group (C geoffroyi, C jacchus, C kuhlii, and C penicillata), this relatively young primate radiation is endemic to the Brazilian Cerrado, Caatinga, and Atlantic Forest biomes. Significant impacts on Callithrix within these biomes resulting from anthropogenic activity include (1) population declines, particularly for the aurita group; (2) widespread geographic displacement, biological invasions, and range expansions of C jacchus and C penicillata; (3) anthropogenic hybridization; and (4) epizootic Yellow Fever and Zika viral outbreaks. A number of Brazilian legal and conservation initiatives are now in place to protect the threatened aurita group and increase research about them. Due to their small size and rapid life history, marmosets are prized biomedical models. As a result, there are increasingly sophisticated genomic Callithrix resources available and burgeoning marmoset functional, immuno-, and epigenomic research. In both the laboratory and the wild, marmosets have given us insight into cognition, social group dynamics, human disease, and pregnancy. Callithrix jacchus and C penicillata are emerging neotropical primate models for arbovirus disease, including Dengue and Zika. Wild marmoset populations are helping us understand sylvatic transmission and human spillover of Zika and Yellow Fever viruses. All of these factors are positioning marmosets as preeminent models to facilitate understanding of facets of evolution, hybridization, conservation, human disease, and emerging infectious diseases.
Collapse
Affiliation(s)
- Joanna Malukiewicz
- Primate Genetics Laboratory, German Primate Centre, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Vanner Boere
- Institute of Humanities, Arts, and Sciences, Federal University of Southern Bahia, Itabuna, Bahia, Brazil
| | | | - Mirela D'arc
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica V A Ferreira
- Centro de Conservação e Manejo de Fauna da Caatinga, UNIVASF, Petrolina, Pernambuco, Brazil
| | - Jeffrey French
- Department of Psychology, University of Nebraska Omaha, Omaha, Nebraska, USA
| | | | | | - Leandro Jerusalinsky
- Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros (ICMBio/CPB), Cabedelo, Paraíba, Brazil
| | - Fabiano R de Melo
- Department of Forest Engineering, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Centro de Conservação dos Saguis-da-Serra, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Mônica M Valença-Montenegro
- Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros (ICMBio/CPB), Cabedelo, Paraíba, Brazil
| | | | - Ita de Oliveira E Silva
- Institute of Humanities, Arts, and Sciences, Federal University of Southern Bahia, Itabuna, Bahia, Brazil
| | - Felipe Santos Pacheco
- Centro de Conservação dos Saguis-da-Serra, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Post-Graduate Program in Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro, Guapimirim, Rio de Janeiro, Brazil
| | - Ricardo C H Del Rosario
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Corinna Ross
- Science and Mathematics, Texas A&M University San Antonio, San Antonio, Texas, USA
- Texas Biomedical Research Institute, Southwest National Primate Research Center, San Antonio, Texas, USA
| | - Carlos R Ruiz-Miranda
- Laboratory of Environmental Sciences, Center for Biosciences and Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Luiz C M Pereira
- Centro de Conservação e Manejo de Fauna da Caatinga, UNIVASF, Petrolina, Pernambuco, Brazil
| | - Nicola Schiel
- Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - Antonio Souto
- Department of Zoology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Vedrana Šlipogor
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Suzette Tardif
- Texas Biomedical Research Institute, Southwest National Primate Research Center, San Antonio, Texas, USA
| |
Collapse
|
6
|
Larson EL, Joo DJ, Nelson ED, Amiot BP, Aravalli RN, Nyberg SL. Fumarylacetoacetate hydrolase gene as a knockout target for hepatic chimerism and donor liver production. Stem Cell Reports 2021; 16:2577-2588. [PMID: 34678209 PMCID: PMC8581169 DOI: 10.1016/j.stemcr.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
A reliable source of human hepatocytes and transplantable livers is needed. Interspecies embryo complementation, which involves implanting donor human stem cells into early morula/blastocyst stage animal embryos, is an emerging solution to the shortage of transplantable livers. We review proposed mutations in the recipient embryo to disable hepatogenesis, and discuss the advantages of using fumarylacetoacetate hydrolase knockouts and other genetic modifications to disable hepatogenesis. Interspecies blastocyst complementation using porcine recipients for primate donors has been achieved, although percentages of chimerism remain persistently low. Recent investigation into the dynamic transcriptomes of pigs and primates have created new opportunities to intimately match the stage of developing animal embryos with one of the many varieties of human induced pluripotent stem cell. We discuss techniques for decreasing donor cell apoptosis, targeting donor tissue to endodermal structures to avoid neural or germline chimerism, and decreasing the immunogenicity of chimeric organs by generating donor endothelium.
Collapse
Affiliation(s)
- Ellen L Larson
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dong Jin Joo
- Department of Surgery, Division of Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Erek D Nelson
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bruce P Amiot
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Scott L Nyberg
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
7
|
Feng Z, Bai S, Qi J, Sun C, Zhang Y, Yu X, Ni H, Wu D, Fan X, Xue D, Liu S, Chen M, Gong J, Wei P, He M, Lam JWY, Li X, Tang BZ, Gao L, Qian J. Biologically Excretable Aggregation-Induced Emission Dots for Visualizing Through the Marmosets Intravitally: Horizons in Future Clinical Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008123. [PMID: 33742500 DOI: 10.1002/adma.202008123] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/07/2021] [Indexed: 05/22/2023]
Abstract
Superb reliability and biocompatibility equip aggregation-induced emission (AIE) dots with tremendous potential for fluorescence bioimaging. However, there is still a chronic lack of design instructions of excretable and bright AIE emitters. Here, a kind of PEGylated AIE (OTPA-BBT) dots with strong absorption and extremely high second near-infrared region (NIR-II) PLQY of 13.6% is designed, and a long-aliphatic-chain design blueprint contributing to their excretion from an animal's body is proposed. Assisted by the OTPA-BBT dots with bright fluorescence beyond 1100 nm and even 1500 nm (NIR-IIb), large-depth cerebral vasculature (beyond 600 µm) as well as real-time blood flow are monitored through a thinned skull, and noninvasive NIR-IIb imaging with rich high-spatial-frequency information gives a precise presentation of gastrointestinal tract in marmosets. Importantly, after intravenous or oral administration, the definite excretion of OTPA-BBT dots from the body is demonstrated, which provides influential evidence of biosafety.
Collapse
Affiliation(s)
- Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Siyi Bai
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Ji Qi
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biological Engineering and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Chaowei Sun
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Yuhuang Zhang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoming Yu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Huwei Ni
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Di Wu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xiaoxiao Fan
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Dingwei Xue
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Shunjie Liu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biological Engineering and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ming Chen
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biological Engineering and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Junyi Gong
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biological Engineering and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Peifa Wei
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biological Engineering and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Mubin He
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biological Engineering and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biological Engineering and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|