1
|
Benito JB, Porter ML, Niemiller ML. Comparative mitogenomic analysis of subterranean and surface amphipods (Crustacea, Amphipoda) with special reference to the family Crangonyctidae. BMC Genomics 2024; 25:298. [PMID: 38509489 PMCID: PMC10956265 DOI: 10.1186/s12864-024-10111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Mitochondrial genomes play important roles in studying genome evolution, phylogenetic analyses, and species identification. Amphipods (Class Malacostraca, Order Amphipoda) are one of the most ecologically diverse crustacean groups occurring in a diverse array of aquatic and terrestrial environments globally, from freshwater streams and lakes to groundwater aquifers and the deep sea, but we have a limited understanding of how habitat influences the molecular evolution of mitochondrial energy metabolism. Subterranean amphipods likely experience different evolutionary pressures on energy management compared to surface-dwelling taxa that generally encounter higher levels of predation and energy resources and live in more variable environments. In this study, we compared the mitogenomes, including the 13 protein-coding genes involved in the oxidative phosphorylation (OXPHOS) pathway, of surface and subterranean amphipods to uncover potentially different molecular signals of energy metabolism between surface and subterranean environments in this diverse crustacean group. We compared base composition, codon usage, gene order rearrangement, conducted comparative mitogenomic and phylogenomic analyses, and examined evolutionary signals of 35 amphipod mitogenomes representing 13 families, with an emphasis on Crangonyctidae. Mitogenome size, AT content, GC-skew, gene order, uncommon start codons, location of putative control region (CR), length of rrnL and intergenic spacers differed between surface and subterranean amphipods. Among crangonyctid amphipods, the spring-dwelling Crangonyx forbesi exhibited a unique gene order, a long nad5 locus, longer rrnL and rrnS loci, and unconventional start codons. Evidence of directional selection was detected in several protein-encoding genes of the OXPHOS pathway in the mitogenomes of surface amphipods, while a signal of purifying selection was more prominent in subterranean species, which is consistent with the hypothesis that the mitogenome of surface-adapted species has evolved in response to a more energy demanding environment compared to subterranean amphipods. Overall, gene order, locations of non-coding regions, and base-substitution rates points to habitat as an important factor influencing the evolution of amphipod mitogenomes.
Collapse
Affiliation(s)
- Joseph B Benito
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Megan L Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
2
|
Li M, Liu M, Hu SY, Luo FZ, Yuan ML. Comparative mitogenomic analyses provide evolutionary insights into the retrolateral tibial apophysis clade (Araneae: Entelegynae). Front Genet 2022; 13:974084. [PMID: 36186478 PMCID: PMC9515440 DOI: 10.3389/fgene.2022.974084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The retrolateral tibial apophysis (RTA) clade is the largest spider lineage within Araneae. To better understand the diversity and evolution, we newly determined mitogenomes of ten RTA species from six families and performed a comparative mitogenomics analysis by combining them with 40 sequenced RTA mitogenomes available on GenBank. The ten mitogenomes encoded 37 typical mitochondrial genes and included a large non-coding region (putative control region). Nucleotide composition and codon usage were well conserved within the RTA clade, whereas diversity in sequence length and structural features was observed in control region. A reversal of strand asymmetry in nucleotide composition, i.e., negative AT-skews and positive GC-skews, was observed in each RTA species, likely resulting from mitochondrial gene rearrangements. All protein-coding genes were evolving under purifying selection, except for atp8 whose Ka/Ks was larger than 1, possibly due to positive selection or selection relaxation. Both mutation pressure and natural selection might contribute to codon usage bias of 13 protein-coding genes in the RTA lineage. Phylogenetic analyses based on mitogenomic data recovered a family-level phylogeny within the RTA; {[(Oval calamistrum clade, Dionycha), Marronoid clade], Sparassidae}. This study characterized RTA mitogenomes and provided some new insights into the phylogeny and evolution of the RTA clade.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Min Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Shi-Yun Hu
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Fang-Zhen Luo
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- *Correspondence: Ming-Long Yuan,
| |
Collapse
|
3
|
Castellucci F, Luchetti A, Mantovani B. Exploring mitogenome evolution in Branchiopoda (Crustacea) lineages reveals gene order rearrangements in Cladocera. Sci Rep 2022; 12:4931. [PMID: 35322086 PMCID: PMC8942981 DOI: 10.1038/s41598-022-08873-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
The class Branchiopoda, whose origin dates back to Cambrian, includes ~ 1200 species which mainly occupy freshwater habitats. The phylogeny and systematics of the class have been debated for long time, until recent phylogenomic analyses allowed to better clarify the relationships among major clades. Based on these data, the clade Anostraca (fairy and brine shrimps) is sister to all other branchiopods, and the Notostraca (tadpole shrimps) results as sister group to Diplostraca, which includes Laevicaudata + Spinicaudata (clam shrimps) and Cladoceromorpha (water fleas + Cyclestherida). In the present analysis, thanks to an increased taxon sampling, a complex picture emerges. Most of the analyzed mitogenomes show the Pancrustacea gene order while in several other taxa they are found rearranged. These rearrangements, though, occur unevenly among taxa, most of them being found in Cladocera, and their taxonomic distribution does not agree with the phylogeny. Our data also seems to suggest the possibility of potentially homoplastic, alternative gene order within Daphniidae.
Collapse
Affiliation(s)
- Filippo Castellucci
- Department of Biological, Geological and Environmental Sciences-University of Bologna, via Selmi 3, 40126, Bologna, Italy.,Zoology Section, Natural History Museum of Denmark-University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences-University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| | - Barbara Mantovani
- Department of Biological, Geological and Environmental Sciences-University of Bologna, via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|