1
|
Hungyo K, Audit B, Vaillant C, Morozov AV. Thermodynamics of nucleosome breathing and positioning. J Chem Phys 2025; 162:025101. [PMID: 39774893 DOI: 10.1063/5.0245457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Nucleosomes are fundamental units of chromatin in which a length of genomic DNA is wrapped around a histone octamer spool in a left-handed superhelix. Large-scale nucleosome maps show a wide distribution of DNA wrapping lengths, which in some cases are tens of base pairs (bp) shorter than the 147 bp canonical wrapping length observed in nucleosome crystal structures. Here, we develop a thermodynamic model that assumes a constant free energy cost of unwrapping a nucleosomal bp. Our model also incorporates linker DNA-short DNA segments between neighboring nucleosomes imposed by the folding of nucleosome arrays into chromatin fibers and other higher-order chromatin structures. We use this model to study nucleosome positioning and occupancy in the presence of nucleosome "breathing"-partial unwrapping and rewrapping of nucleosomal DNA due to interactions with the neighboring particles. We find that, as the unwrapping cost per bp and the chemical potential are varied, the nucleosome arrays are characterized by three distinct states, with low, intermediate, and high densities. The transition between the latter two states proceeds through an equiprobable state in which all nucleosome wrapping lengths are equally likely. We study the equiprobable state theoretically using a mean-field approach, obtaining an excellent agreement with numerical simulations. Finally, we use our model to reproduce S. cerevisiae nucleosome occupancy profiles observed in the vicinity of transcription start sites, as well as genome-wide distributions of nucleosome wrapping lengths. Overall, our results highlight the key role of partial nucleosome unwrapping in shaping the genome-wide patterns of nucleosome positioning and occupancy.
Collapse
Affiliation(s)
- Kharerin Hungyo
- CNRS, ENS de Lyon, LPENSL, UMR5672, F-69342 Lyon Cedex 07, France
- School of Biosciences and Bioengineering, IIT Mandi, Kamand, HP 175005, India
| | - Benjamin Audit
- CNRS, ENS de Lyon, LPENSL, UMR5672, F-69342 Lyon Cedex 07, France
| | - Cédric Vaillant
- CNRS, ENS de Lyon, LPENSL, UMR5672, F-69342 Lyon Cedex 07, France
| | - Alexandre V Morozov
- Department of Physics and Astronomy and Center for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
2
|
Hu G, Grover CE, Vera DL, Lung PY, Girimurugan SB, Miller ER, Conover JL, Ou S, Xiong X, Zhu D, Li D, Gallagher JP, Udall JA, Sui X, Zhang J, Bass HW, Wendel JF. Evolutionary Dynamics of Chromatin Structure and Duplicate Gene Expression in Diploid and Allopolyploid Cotton. Mol Biol Evol 2024; 41:msae095. [PMID: 38758089 PMCID: PMC11140268 DOI: 10.1093/molbev/msae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.
Collapse
Affiliation(s)
- Guanjing Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated, Chinese Academy of Agricultural Sciences, Institute of Cotton Research, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Daniel L Vera
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | | | - Emma R Miller
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Justin L Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Shujun Ou
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Dongming Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Joseph P Gallagher
- Forage Seed and Cereal Research Unit, USDA/Agricultural Research Service, Corvallis, OR 97331, USA
| | - Joshua A Udall
- Crop Germplasm Research Unit, USDA/Agricultural Research Service, College Station, TX 77845, USA
| | - Xin Sui
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Hank W Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Arjmand B, Rezaei Tavirani M, Jahani Sherafat S, Rezaei M, Farahani M, Rezaei Tavirani M. Evaluation of the Cellular Resistance Process in Treated Cells Via Extracorporeal Photopheresis. J Lasers Med Sci 2023; 14:e46. [PMID: 38028865 PMCID: PMC10658109 DOI: 10.34172/jlms.2023.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023]
Abstract
Introduction: Extracorporeal photopheresis (ECP) is a therapeutic method applied against some diseases such as cancers. Using 8-methoxypsoralen (8-MOP) and UVA radiation in ECP is associated with achievement in the treatment of patients with leukemic cutaneous T-cell lymphoma (CTCL). Evaluation of cellular resistance versus ECP is the aim of this study. Methods: Data were downloaded from the Gene Expression Omnibus (GEO) database and were analyzed via the GEO2R program. The significant DEGs were assessed via protein-protein interaction (PPI) network analysis by using the STRING database and Cytoscape software. The critical genes were evaluated via gene ontology by using the ClueGO application of Cytoscape software. The identified biological processes were determined and analyzed. Results: Fifty-seven significant DEGs were determined. The main connected component of the PPI network including 32 queried significant DEGs plus 50 first neighbors was constructed. Nineteen histones as critical nodes were assessed via gene ontology, and "nucleosome organization" was pointed out as the crucial biological process. Finally, 15 histones from H2A, H2B, and H3 histone families were identified as the key genes that are involved in the resistance property of the treated cells. Conclusion: In conclusion, 15 members of H2A, H2B, and H3 families (especially H2A family) were considered as the origin of resistance versus ECP treatment. It is concluded that sensitivity to ECP treatment depends on gross molecular events which are involved in the functions of histones.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Rezaei
- Genomic Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Rezaei Tavirani
- Department of surgery, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Yang T, Wang D, Tian G, Sun L, Yang M, Yin X, Xiao J, Sheng Y, Zhu D, He H, Zhou Y. Chromatin remodeling complexes regulate genome architecture in Arabidopsis. THE PLANT CELL 2022; 34:2638-2651. [PMID: 35445713 PMCID: PMC9252501 DOI: 10.1093/plcell/koac117] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/13/2022] [Indexed: 05/29/2023]
Abstract
In eukaryotes, three-dimensional (3D) chromatin architecture maintains genome stability and is important in regulating gene transcription. However, little is known about the mechanisms by which diverse ATP-dependent chromatin remodeling complexes regulate the 3D chromatin structure in plants. We examined the 3D chromatin structure within the ATPase subunit of the SWI/SNF, ISWI, INO80, and CHD remodeling complexes in wild-type (WT) and mutant Arabidopsis thaliana plants by combining high-throughput sequencing with in situ Hi-C, the enrichment of histone marks, nucleosome density, and gene expression. We found that compartment regions switched and compartmental strength was significantly weakened in all four enzyme mutants. Chromatin remodeling complexes differentially regulated the nucleosome distribution pattern and density within the switching compartments. Alterations of nucleosome distribution pattern and density were associated with a reduction in H3K27me3 levels in the chromatin remodeling enzyme mutants and led to compartment switching. Our data show that chromatin remodeling complexes regulate the linear nucleosome distribution pattern and density to promote H3K27me3 deposition, which in turn regulates 3D chromatin structure.
Collapse
Affiliation(s)
- Tingting Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Dingyue Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Guangmei Tian
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Linhua Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
- School of Life Science, Peking University, 100871 Beijing, China
| | - Minqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Xiaochang Yin
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yu Sheng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
- School of Life Science, Peking University, 100871 Beijing, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
- School of Life Science, Peking University, 100871 Beijing, China
| | | |
Collapse
|
5
|
Kong S, Lu Y, Tan S, Li R, Gao Y, Li K, Zhang Y. Nucleosome-Omics: A Perspective on the Epigenetic Code and 3D Genome Landscape. Genes (Basel) 2022; 13:1114. [PMID: 35885897 PMCID: PMC9323251 DOI: 10.3390/genes13071114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic information is loaded on chromatin, which involves DNA sequence arrangement and the epigenetic landscape. The epigenetic information including DNA methylation, nucleosome positioning, histone modification, 3D chromatin conformation, and so on, has a crucial impact on gene transcriptional regulation. Out of them, nucleosomes, as basal chromatin structural units, play an important central role in epigenetic code. With the discovery of nucleosomes, various nucleosome-level technologies have been developed and applied, pushing epigenetics to a new climax. As the underlying methodology, next-generation sequencing technology has emerged and allowed scientists to understand the epigenetic landscape at a genome-wide level. Combining with NGS, nucleosome-omics (or nucleosomics) provides a fresh perspective on the epigenetic code and 3D genome landscape. Here, we summarized and discussed research progress in technology development and application of nucleosome-omics. We foresee the future directions of epigenetic development at the nucleosome level.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yubo Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (S.K.); (Y.L.); (S.T.); (R.L.); (Y.G.); (K.L.)
| |
Collapse
|
6
|
Gnan S, Matelot M, Weiman M, Arnaiz O, Guérin F, Sperling L, Bétermier M, Thermes C, Chen CL, Duharcourt S. GC content, but not nucleosome positioning, directly contributes to intron splicing efficiency in Paramecium. Genome Res 2022; 32:699-709. [PMID: 35264448 PMCID: PMC8997360 DOI: 10.1101/gr.276125.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
Abstract
Eukaryotic genes are interrupted by introns that must be accurately spliced from mRNA precursors. With an average length of 25 nt, the more than 90,000 introns of Paramecium tetraurelia stand among the shortest introns reported in eukaryotes. The mechanisms specifying the correct recognition of these tiny introns remain poorly understood. Splicing can occur cotranscriptionally, and it has been proposed that chromatin structure might influence splice site recognition. To investigate the roles of nucleosome positioning in intron recognition, we determined the nucleosome occupancy along the P. tetraurelia genome. We show that P. tetraurelia displays a regular nucleosome array with a nucleosome repeat length of ∼151 bp, among the smallest periodicities reported. Our analysis has revealed that introns are frequently associated with inter-nucleosomal DNA, pointing to an evolutionary constraint favoring introns at the AT-rich nucleosome edge sequences. Using accurate splicing efficiency data from cells depleted for nonsense-mediated decay effectors, we show that introns located at the edge of nucleosomes display higher splicing efficiency than those at the center. However, multiple regression analysis indicates that the low GC content of introns, rather than nucleosome positioning, is associated with high splicing efficiency. Our data reveal a complex link between GC content, nucleosome positioning, and intron evolution in Paramecium.
Collapse
Affiliation(s)
- Stefano Gnan
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, Paris, 75005 France
| | - Mélody Matelot
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Marion Weiman
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Frédéric Guérin
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Linda Sperling
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, Paris, 75005 France
| | - Sandra Duharcourt
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|