1
|
Hao Y, Han K, Wang T, Yu J, Ding H, Dao F. Exploring the potential of epigenetic clocks in aging research. Methods 2024; 231:37-44. [PMID: 39251102 DOI: 10.1016/j.ymeth.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024] Open
Abstract
The process of aging is a notable risk factor for numerous age-related illnesses. Hence, a reliable technique for evaluating biological age or the pace of aging is crucial for understanding the aging process and its influence on the progression of disease. Epigenetic alterations are recognized as a prominent biomarker of aging, and epigenetic clocks formulated on this basis have been shown to provide precise estimations of chronological age. Extensive research has validated the effectiveness of epigenetic clocks in determining aging rates, identifying risk factors for aging, evaluating the impact of anti-aging interventions, and predicting the emergence of age-related diseases. This review provides a detailed overview of the theoretical principles underlying the development of epigenetic clocks and their utility in aging research. Furthermore, it explores the existing obstacles and possibilities linked to epigenetic clocks and proposes potential avenues for future studies in this field.
Collapse
Affiliation(s)
- Yuduo Hao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kaiyuan Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ting Wang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Junwen Yu
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Fuying Dao
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
2
|
García-delaTorre P, Rivero-Segura NA, Sánchez-García S, Becerril-Rojas K, Sandoval-Rodriguez FE, Castro-Morales D, Cruz-Lopez M, Vazquez-Moreno M, Rincón-Heredia R, Ramirez-Garcia P, Gomez-Verjan JC. GrimAge is elevated in older adults with mild COVID-19 an exploratory analysis. GeroScience 2024; 46:3511-3524. [PMID: 38358578 PMCID: PMC11226692 DOI: 10.1007/s11357-024-01095-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
COVID-19 has been contained; however, the side effects associated with its infection continue to be a challenge for public health, particularly for older adults. On the other hand, epigenetic status contributes to the inter-individual health status and is associated with COVID-19 severity. Nevertheless, current studies focus only on severe COVID-19. Considering that most of the worldwide population developed mild COVID-19 infection. In the present exploratory study, we aim to analyze the association of mild COVID-19 with epigenetic ages (HorvathAge, HannumAge, GrimAge, PhenoAge, SkinAge, and DNAmTL) and clinical variables obtained from a Mexican cohort of older adults. We found that all epigenetic ages significantly differ from the chronological age, but only GrimAge is elevated. Additionally, both the intrinsic epigenetic age acceleration (IEAA) and the extrinsic epigenetic age acceleration (EEAA) are accelerated in all patients. Moreover, we found that immunological estimators and DNA damage were associated with PhenoAge, SkinBloodHorvathAge, and HorvathAge, suggesting that the effects of mild COVID-19 on the epigenetic clocks are mainly associated with inflammation and immunology changes. In conclusion, our results show that the effects of mild COVID-19 on the epigenetic clock are mainly associated with the immune system and an increase in GrimAge, IEAA, and EEAA.
Collapse
Affiliation(s)
- Paola García-delaTorre
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, México
| | | | - Sergio Sánchez-García
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | | | | | - Diana Castro-Morales
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), 10200, Mexico City, Mexico
| | - Miguel Cruz-Lopez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Miguel Vazquez-Moreno
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Perla Ramirez-Garcia
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), 10200, Mexico City, Mexico
| | - Juan Carlos Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), 10200, Mexico City, Mexico.
| |
Collapse
|
3
|
Martínez-Magaña JJ, Hurtado-Soriano J, Rivero-Segura NA, Montalvo-Ortiz JL, Garcia-delaTorre P, Becerril-Rojas K, Gomez-Verjan JC. Towards a Novel Frontier in the Use of Epigenetic Clocks in Epidemiology. Arch Med Res 2024; 55:103033. [PMID: 38955096 DOI: 10.1016/j.arcmed.2024.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Health problems associated with aging are a major public health concern for the future. Aging is a complex process with wide intervariability among individuals. Therefore, there is a need for innovative public health strategies that target factors associated with aging and the development of tools to assess the effectiveness of these strategies accurately. Novel approaches to measure biological age, such as epigenetic clocks, have become relevant. These clocks use non-sequential variable information from the genome and employ mathematical algorithms to estimate biological age based on DNA methylation levels. Therefore, in the present study, we comprehensively review the current status of the epigenetic clocks and their associations across the human phenome. We emphasize the potential utility of these tools in an epidemiological context, particularly in evaluating the impact of public health interventions focused on promoting healthy aging. Our review describes associations between epigenetic clocks and multiple traits across the life and health span. Additionally, we highlighted the evolution of studies beyond mere associations to establish causal mechanisms between epigenetic age and disease. We explored the application of epigenetic clocks to measure the efficacy of interventions focusing on rejuvenation.
Collapse
Affiliation(s)
- José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | | | | | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Paola Garcia-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional, Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | |
Collapse
|
4
|
Musci RJ, Raghunathan RS, Johnson SB, Klein L, Ladd-Acosta C, Ansah R, Hassoun R, Voegtline KM. Using Epigenetic Clocks to Characterize Biological Aging in Studies of Children and Childhood Exposures: a Systematic Review. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2023; 24:1398-1423. [PMID: 37477807 PMCID: PMC10964791 DOI: 10.1007/s11121-023-01576-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Biological age, measured via epigenetic clocks, offers a unique and useful tool for prevention scientists to explore the short- and long-term implications of age deviations for health, development, and behavior. The use of epigenetic clocks in pediatric research is rapidly increasing, and there is a need to review the landscape of this work to understand the utility of these clocks for prevention scientists. We summarize the current state of the literature on the use of specific epigenetic clocks in childhood. Using systematic review methods, we identified studies published through February 2023 that used one of three epigenetic clocks as a measure of biological aging. These epigenetic clocks could either be used as a predictor of health outcomes or as a health outcome of interest. The database search identified 982 records, 908 of which were included in a title and abstract review. After full-text screening, 68 studies were eligible for inclusion. While findings were somewhat mixed, a majority of included studies found significant associations between the epigenetic clock used and the health outcome of interest or between an exposure and the epigenetic clock used. From these results, we propose the use of epigenetic clocks as a tool to understand how exposures impact biologic aging pathways and development in early life, as well as to monitor the effectiveness of preventive interventions that aim to reduce exposure and associated adverse health outcomes.
Collapse
Affiliation(s)
- Rashelle J Musci
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA.
| | | | - Sara B Johnson
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Lauren Klein
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Rosemary Ansah
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
| | - Ronda Hassoun
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
| | - Kristin M Voegtline
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| |
Collapse
|