1
|
de Paula TS, Leite DDMB, Lobo-Hajdu G, Vacelet J, Thompson F, Hajdu E. The complete mitochondrial DNA of the carnivorous sponge Lycopodina hypogea is putatively complemented by microDNAs. PeerJ 2024; 12:e18255. [PMID: 39559335 PMCID: PMC11572364 DOI: 10.7717/peerj.18255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024] Open
Abstract
Carnivorous sponges (Porifera, Demospongiae, Cladorhizidae), contrary to the usual filter-feeding mechanism of sponges, are specialized in catching larger prey through adhesive surfaces or hook-like spicules. The mitochondrial DNA of sponges overall present several divergences from other metazoans, and while presenting unique features among major transitions, such as in calcarean and glass sponges, poriferan mitogenomes are relatively stable within their groups. Here, we report and discuss the mitogenome of Lycopodina hypogea (Vacelet & Boury-Esnault, 1996), which greatly vary from its subordinal counterparts in both structure and gene order. This mitogenome is seemingly multipartite into three chromosomes, two of them as microDNAs. The main chromosome, chrM1, is unusually large, 31,099 bp in length, has a unique gene order within Poecilosclerida, and presents two rRNA, 13 protein and 19 tRNA coding genes. Intergenic regions comprise approximately 40% of chrM1, bearing several terminal direct and inverted repeats (TDRr and TIRs) but holding no vestiges of former mitochondrial sequences, pseudogenes, or transposable elements. The nd4l and trnI(gau) genes are likely located in microDNAs thus comprising putative mitochondrial chromosomes chrM2, 291 bp, and chrM3, 140 bp, respectively. It is unclear which processes are responsible for the remarkable features of the of L. hypogea mitogenome, including a generalized gene rearrangement, long IGRs, and putative extrachromosomal genes in microDNAs.
Collapse
Affiliation(s)
- Thiago Silva de Paula
- Departamento de Genética, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dora de Moura Barbosa Leite
- Programa de Pós-graduação em Ciências Biológicas (Genética), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Lobo-Hajdu
- Departamento de Genética, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jean Vacelet
- Institute Mediterranean Biodiversité Et D’ecologie, CNRS, Aix Marseille Université, Marseille, France
| | - Fabiano Thompson
- Departamento de Biologia Marinha, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Hajdu
- Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Iyyappan S, Rather MA, Ahmad I, Ahmad I. Comparative mitochondrial genomics analysis of selected species of Schizothoracinae sub family to explore the differences at mitochondrial DNA level. Comput Biol Chem 2024; 112:108165. [PMID: 39106606 DOI: 10.1016/j.compbiolchem.2024.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
A comprehensive analysis of the whole mitochondrial genomes of the Schizothoracinae subfamily of the family Cyprinidae has been revealed for the first time. The species analyzed include Schizothorax niger, Schizothorax esocinus, Schizothorax labiatus and Schizothorax plagoistomus. The total mitochondrial DNA (mtDNA) length was determined to be 16585 bp, 16583 bp, 16582 bp and 16576 bp, respectively with 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 2 non-coding area genes. The combined mean base compositions of the four species were as follows: A: 29.91 % T: 25.47 % G: 17.65 % C 27.01 %. The range of the GC content is 45-44 %, respectively. All protein coding genes (PCGs) commenced with the typical ATG codon, except for the cytochrome c oxidase subunit 1 (COX1) gene with GTG. The analysis of vital amino acid biosynthesis genes (COX1, ATPase 6, ATPase 8) in four different species revealed no significant differences. All 13 PCGs had Ka/Ks ratios that were all lesser than one, demonstrating purifying selection on those molecules. These tRNA genes were predicted to fold into the typical cloverleaf secondary structures with normal base pairing and ranged in size from 66 to 75 nucleotides. Additionally, the phylogenetic tree analysis revealed that S. esocinus species that was most alike to S. labiatus. This study provides critical data for phylogenetic analysis of the Schizothoracinae subfamily, which will help to resolve taxonomic difficulties and identify evolutionary links. Detailed mtDNA data are an invaluable resource for studying genetic diversity, population structure, and gene flow. Understanding genetic makeup can help inform conservation plans, identify unique populations, and track genetic variation to ensure effective preservation.
Collapse
Affiliation(s)
- S Iyyappan
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil, Ganderbal, Sher-e-Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil, Ganderbal, Sher-e-Kashmir University of Agricultural Science and Technology, Kashmir 190006, India.
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil, Ganderbal, Sher-e-Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Irfan Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil, Ganderbal, Sher-e-Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| |
Collapse
|
3
|
Drozdova PB, Madyarova EV, Gurkov AN, Saranchina AE, Romanova EV, Petunina JV, Peretolchina TE, Sherbakov DY, Timofeyev MA. Lake Baikal amphipods and their genomes, great and small. Vavilovskii Zhurnal Genet Selektsii 2024; 28:317-325. [PMID: 38952708 PMCID: PMC11214899 DOI: 10.18699/vjgb-24-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 07/03/2024] Open
Abstract
Endemic amphipods (Crustacea: Amphipoda) of Lake Baikal represent an outstanding example of large species flocks occupying a wide range of ecological niches and originating from a handful of ancestor species. Their development took place at a restricted territory and is thus open for comprehensive research. Such examples provide unique opportunities for studying behavioral, anatomic, or physiological adaptations in multiple combinations of environmental conditions and thus attract considerable attention. The existing taxonomies of this group list over 350 species and subspecies, which, according to the molecular phylogenetic studies of marker genes, full transcriptomes and mitochondrial genomes, originated from at least two introductions into the lake. The studies of allozymes and marker genes have revealed a significant cryptic diversity in Baikal amphipods, as well as a large variance in genetic diversity within some morphological species. Crossing experiments conducted so far for two morphological species suggest that the differences in the mitochondrial marker (cytochrome c oxidase subunit I gene) can potentially be applied for making predictions about reproductive isolation. For about one-tenth of the Baikal amphipod species, nuclear genome sizes and chromosome numbers are known. While genome sizes vary within one order of magnitude, the karyotypes are relatively stable (2n = 52 for most species studied). Moreover, analysis of the diversity of repeated sequences in nuclear genomes showed significant between-species differences. Studies of mitochondrial genomes revealed some unusual features, such as variation in length and gene order, as well as duplications of tRNA genes, some of which also underwent remolding (change in anticodon specificity due to point mutations). The next important steps should be (i) the assembly of whole genomes for different species of Baikal amphipods, which is at the moment hampered by complicated genome structures with high repeat content, and (ii) updating species taxonomy taking into account all the data.
Collapse
Affiliation(s)
- P B Drozdova
- Irkutsk State University, Irkutsk, Russia Baikal Research Centre, Irkutsk, Russia
| | | | - A N Gurkov
- Irkutsk State University, Irkutsk, Russia Baikal Research Centre, Irkutsk, Russia
| | | | - E V Romanova
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - J V Petunina
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - T E Peretolchina
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - D Y Sherbakov
- Irkutsk State University, Irkutsk, Russia Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | | |
Collapse
|
4
|
de la Cruz-Huervana JJ, Miyamoto N, Kano Y, Onikura N, Kurita Y. The complete mitochondrial genome of freshwater gammarid Gammarus nipponensis (Crustacea: Amphipoda: Gammaridae). Mitochondrial DNA B Resour 2024; 9:447-451. [PMID: 38586505 PMCID: PMC10993753 DOI: 10.1080/23802359.2024.2335990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/23/2024] [Indexed: 04/09/2024] Open
Abstract
This study presents the complete mitochondrial genome sequence of Gammarus nipponensis, a freshwater crustacean found in the western regions of Honshu, Shikoku and Kyushu in Japan. The entire genome is 16,429 bp in length, encoding a standard set of 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes, as well as the putative control regions. The mitochondrial genome of G. nipponensis is characterized by a high concentration of A and T nucleotides (67.1%). Notably, the mitogenome contains long TATTTTA repeats in the control region 2 at 686 bp long. This newly available genome information will be useful for studying the evolutionary relationships within the genus Gammarus and for understanding diversification among G. nipponensis populations.
Collapse
Affiliation(s)
- Joana Joy de la Cruz-Huervana
- Fishery Research Laboratory, Kyushu University, Japan
- Aquaculture Department, Southeast Asian Fisheries Development Center, Philippines
| | - Norio Miyamoto
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yuichi Kano
- Kyushu University, Fukuoka, Japan
- Kyushu Open University, Fukuoka, Japan
| | - Norio Onikura
- Fishery Research Laboratory, Kyushu University, Japan
| | | |
Collapse
|
5
|
Drozdova P, Saranchina A, Madyarova E, Gurkov A, Timofeyev M. Experimental Crossing Confirms Reproductive Isolation between Cryptic Species within Eulimnogammarus verrucosus (Crustacea: Amphipoda) from Lake Baikal. Int J Mol Sci 2022; 23:ijms231810858. [PMID: 36142769 PMCID: PMC9506054 DOI: 10.3390/ijms231810858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ancient lakes are known speciation hotspots. One of the most speciose groups in the ancient Lake Baikal are gammaroid amphipods (Crustacea: Amphipoda: Gammaroidea). There are over 350 morphological species and subspecies of amphipods in Baikal, but the extent of cryptic variation is still unclear. One of the most common species in the littoral zone of the lake, Eulimnogammarus verrucosus (Gerstfeldt, 1858), was recently found to comprise at least three (pseudo)cryptic species based on molecular data. Here, we further explored these species by analyzing their mitogenome-based phylogeny, genome sizes with flow cytometry, and their reproductive compatibility. We found divergent times of millions of years and different genome sizes in the three species (6.1, 6.9 and 8 pg), further confirming their genetic separation. Experimental crossing of the western and southern species, which are morphologically indistinguishable and have adjacent ranges, showed their separation with a post-zygotic reproductive barrier, as hybrid embryos stopped developing roughly at the onset of gastrulation. Thus, the previously applied barcoding approach effectively indicated the separate biological species within E. verrucosus. These results provide new data for investigating genome evolution and highlight the need for precise tracking of the sample origin in any studies in this morphospecies.
Collapse
Affiliation(s)
- Polina Drozdova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Baikal Research Centre, 664011 Irkutsk, Russia
- Correspondence: (P.D.); (M.T.)
| | | | | | - Anton Gurkov
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Baikal Research Centre, 664011 Irkutsk, Russia
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Baikal Research Centre, 664011 Irkutsk, Russia
- Correspondence: (P.D.); (M.T.)
| |
Collapse
|