1
|
Semenova EA, Zempo H, Miyamoto-Mikami E, Kumagai H, Larin AK, Sultanov RI, Babalyan KA, Zhelankin AV, Tobina T, Shiose K, Kakigi R, Tsuzuki T, Ichinoseki-Sekine N, Kobayashi H, Naito H, Burniston J, Generozov EV, Fuku N, Ahmetov II. Genome-Wide Association Study Identifies CDKN1A as a Novel Locus Associated with Muscle Fiber Composition. Cells 2022; 11:cells11233910. [PMID: 36497168 PMCID: PMC9737696 DOI: 10.3390/cells11233910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Muscle fiber composition is associated with physical performance, with endurance athletes having a high proportion of slow-twitch muscle fibers compared to power athletes. Approximately 45% of muscle fiber composition is heritable, however, single nucleotide polymorphisms (SNP) underlying inter-individual differences in muscle fiber types remain largely unknown. Based on three whole genome SNP datasets, we have shown that the rs236448 A allele located near the cyclin-dependent kinase inhibitor 1A (CDKN1A) gene was associated with an increased proportion of slow-twitch muscle fibers in Russian (n = 151; p = 0.039), Finnish (n = 287; p = 0.03), and Japanese (n = 207; p = 0.008) cohorts (meta-analysis: p = 7.9 × 10−5. Furthermore, the frequency of the rs236448 A allele was significantly higher in Russian (p = 0.045) and Japanese (p = 0.038) elite endurance athletes compared to ethnically matched power athletes. On the contrary, the C allele was associated with a greater proportion of fast-twitch muscle fibers and a predisposition to power sports. CDKN1A participates in cell cycle regulation and is suppressed by the miR-208b, which has a prominent role in the activation of the slow myofiber gene program. Bioinformatic analysis revealed that the rs236448 C allele was associated with increased CDKN1A expression in whole blood (p = 8.5 × 10−15) and with greater appendicular lean mass (p = 1.2 × 10−5), whereas the A allele was associated with longer durations of exercise (p = 0.044) reported amongst the UK Biobank cohort. Furthermore, the expression of CDKN1A increased in response to strength (p < 0.0001) or sprint (p = 0.00035) training. Accordingly, we found that CDKN1A expression is significantly (p = 0.002) higher in the m. vastus lateralis of strength athletes compared to endurance athletes and is positively correlated with the percentage of fast-twitch muscle fibers (p = 0.018). In conclusion, our data suggest that the CDKN1A rs236448 SNP may be implicated in the determination of muscle fiber composition and may affect athletic performance.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Hirofumi Zempo
- Faculty of Health and Nutrition, Tokyo Seiei College, Tokyo 124-0025, Japan
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
| | - Hiroshi Kumagai
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Rinat I. Sultanov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Konstantin A. Babalyan
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Andrey V. Zhelankin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Takuro Tobina
- Faculty of Nursing and Nutrition, University of Nagasaki, Nagasaki 851-2195, Japan
| | - Keisuke Shiose
- Faculty of Education, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ryo Kakigi
- Faculty of Management & Information Science, Josai International University, Chiba 283-8555, Japan
| | | | - Noriko Ichinoseki-Sekine
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
- Faculty of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan
| | - Hiroyuki Kobayashi
- Department of General Medicine, Mito Medical Center, Tsukuba University Hospital, Ibaraki 310-0015, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
| | - Jatin Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Correspondence:
| |
Collapse
|
2
|
Stankute I, Kazlauskiene M, Blouin JL, Schwitzgebel VM, Verkauskiene R. Co-segregation analysis and functional trial in vivo of candidate genes for monogenic diabetes. BMJ Open Diabetes Res Care 2022; 10:10/6/e003038. [PMID: 36585034 PMCID: PMC9809257 DOI: 10.1136/bmjdrc-2022-003038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The aim of this study was to perform familial co-segregation analysis and functional trial in vivo during mixed meal tolerance test (MMTT) of novel variants in diabetes candidate genes. RESEARCH DESIGN AND METHODS It is a continuation of the project "Genetic diabetes in Lithuania" with the cohort of 1209 patients with diabetes. Prior screening for autoimmune markers confirmed type 1 diabetes (T1D) diagnosis in 88.1% (n=1065) of patients, and targeted next-generation sequencing identified 3.5% (n=42) pathogenic variants in MODY genes. Subsequently, 102 patients were classified as having diabetes of unknown etiology. 12/102 were found to have novel variants in potential diabetes genes (RFX2, RREB1, SLC5A1 (3 patients with variants in this gene), GCKR, MC4R, CASP10, TMPRSS6, HGFAC, DACH1, ZBED3). Co-segregation analysis and MMTT were carried out in order to study beta-cell function in subjects with specific variants. RESULTS MMTT analysis showed that probands with variants in MC4R, CASP10, TMPRSS6, HGFAC, and SLC5A1 (c.1415T>C) had sufficient residual beta-cell function with stimulated C-peptide (CP) >200 pmol/L. Seven individuals with variants in RFX2, RREB1, GCKR, DACH1, ZBED3 and SLC5A1 (c.1415T>C, and c.932A>T) presented with complete beta-cell failure. No statistical differences were found between patients with sufficient CP production and those with complete beta-cell failure when comparing age at the onset and duration of diabetes. Nineteen family members were included in co-segregation analysis; no diabetes cases were reported among them. Only in patient with the variant c.1894G>A in RFX2 gene, none of the family members were affected by proband's variant. CONCLUSIONS Functional beta-cell study in vivo allowed to select five most probable genes for monogenic diabetes. Familial co-segregation analysis showed that novel variant in RFX2 gene could be a possible cause of diabetes. Future functional analysis in vitro is necessary to support or rule out the genetic background as a cause of diabetes.
Collapse
Affiliation(s)
- Ingrida Stankute
- Institute of Endocrinology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mintaute Kazlauskiene
- Institute of Endocrinology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jean-Louis Blouin
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Department of Diagnostics, University Hospitals of Geneva, Geneva, Switzerland
| | - Valerie M Schwitzgebel
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Rasa Verkauskiene
- Institute of Endocrinology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
3
|
Common Single Nucleotide Polymorphism of TMPRSS6, an Iron Regulation Gene, Associated with Variable Red Blood Cell Indices in Deletional α-Globin Genotypes. Genes (Basel) 2022; 13:genes13091502. [PMID: 36140670 PMCID: PMC9498602 DOI: 10.3390/genes13091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
Red blood cell (RBC) indices, including mean corpuscular volume (MCV) and mean corpuscular haemoglobin (MCH), have been widely used for primary screening for thalassaemia (thal) syndromes. Recently, a single nucleotide polymorphism (SNP) rs855791 of TMPRSS6, an iron regulation gene involved in the substitution of a nucleotide between thymine (T) and cytosine (C) in exon 17 resulted in an amino acid change, p.Val736Ala (V736A), has been described to associate with RBC indices. The objective was to study the effects of common SNP V736A on RBC indices in deletional α-thal variations. SNP rs855791 genotypes were identified from 433 Thai volunteers, including 32.6% males and 67.4% females with an average age of 23.0 ± 8.7 years. These populations included individuals (82.4%) who had normal globin genotype (αα/αα, ββ) and α-thal carriers, which were divided into two subgroups, including α+-thal (-α/αα) (14.1%) and αo-thal (--/αα) (3.5%). Among three SNP genotypes, the C allele gradually expressed higher MCV and MCH than those of the T allele in both α+- and αo-thal traits. Importantly, SNP rs855791 of TMPRSS6 responded to α-globin deletions for sustaining RBC sizes and haemoglobinisation in α-thal carriers.
Collapse
|