1
|
Menon D, Nashi S, Mohanty M, Dubbal R, Mk F, Vengalil S, Thomas A, Kumar V, Baskar D, Arunachal G, Nalini A. A novel DHTKD1 gene mutation with ALS like presentation: a case report. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:413-415. [PMID: 37880984 DOI: 10.1080/21678421.2023.2273366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
DHTKD1 is a nuclear gene that encodes "dehydrogenase E1 and transketolase domain-containing 1", essential in mitochondrial metabolism. First identified in the patients of 2-amino-apidic and 2 oxoapidic aciduria, mutation in this gene has recently been implicated in CMT2Q and ALS. Here we report the case of a septuagenarian who presented with a 2 years progressive history of respiratory and neck muscle weakness without significant bulbar and limb involvement. Clinical and electrophysiological examination revealed lower motor neuron involvement with widespread chronic denervation and reinnervation. Clinical exome sequencing revealed a heterozygous nonsense variant in exon 8 of the DHTKD1 gene, which was previously described in CMT2Q. This report highlights the pleotropic phenotypic presentation of DHTKD1 mutation and the need for genetic testing even in sporadic cases of ALS presenting at a later age.
Collapse
Affiliation(s)
- Deepak Menon
- Department of Neurology, National Institute of Mental Health and Neuro-Sciences, Bangalore, India and
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neuro-Sciences, Bangalore, India and
| | - Manisha Mohanty
- Department of Neurology, National Institute of Mental Health and Neuro-Sciences, Bangalore, India and
| | - Rohin Dubbal
- Department of Neurology, National Institute of Mental Health and Neuro-Sciences, Bangalore, India and
| | - Farsana Mk
- Department of Neurology, National Institute of Mental Health and Neuro-Sciences, Bangalore, India and
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neuro-Sciences, Bangalore, India and
| | - Aneesha Thomas
- Department of Neurology, National Institute of Mental Health and Neuro-Sciences, Bangalore, India and
| | - Vijay Kumar
- Department of Neurology, National Institute of Mental Health and Neuro-Sciences, Bangalore, India and
| | - Dipti Baskar
- Department of Neurology, National Institute of Mental Health and Neuro-Sciences, Bangalore, India and
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neuro-Sciences, Bangalore, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neuro-Sciences, Bangalore, India and
| |
Collapse
|
2
|
Szabo E, Nagy B, Czajlik A, Komlodi T, Ozohanics O, Tretter L, Ambrus A. Mitochondrial Alpha-Keto Acid Dehydrogenase Complexes: Recent Developments on Structure and Function in Health and Disease. Subcell Biochem 2024; 104:295-381. [PMID: 38963492 DOI: 10.1007/978-3-031-58843-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Balint Nagy
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Andras Czajlik
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Timea Komlodi
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Oliver Ozohanics
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Snyder K, Gorse K, Kochanek PM, Jackson TC. Neuronal RBM5 modulates cell signaling responses to traumatic and hypoxic-ischemic injury in a sex-dependent manner. Cell Death Discov 2023; 9:379. [PMID: 37848418 PMCID: PMC10582027 DOI: 10.1038/s41420-023-01677-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
It is not clear if inhibiting the pro-death gene RNA binding motif 5 (RBM5) is neuroprotective in isolated primary neurons or if it regulates cell survival in a sex-dependent manner. Here we established sex-dichotomized primary cortical neuron cultures from transgenic mice harboring a floxed RBM5 gene-trap. Lentivirus-mediated expression of CRE was used to silence RBM5 expression. Male and female neurons were maintained in next-generation Neurobasal-Plus media and subjected to a mechanical stretch-injury (to model traumatic brain injury) or oxygen-glucose deprivation/OGD (to model ischemia). RBM5 KO did not affect 24 h post-injury survival as determined by lactate dehydrogenase (LDH) release, in either paradigm. In contrast, female KO neurons had increased spectrin breakdown products post-insult (in both models). Furthermore, in OGD, RBM5 KO in male neurons exacerbated injury-induced downregulation of pro-survival AKT activation (pAKT473) but conversely led to pAKT473 sparing in female neurons. Moreover, global proteomics identified 19 differentially expressed (DE) proteins in OGD-injured male neurons, and 102 DE proteins in injured female neurons. Two novel RBM5-regulated proteins (PIGQ and EST1C) were identified in injured male KO neurons, and 8 novel proteins identified in injured female KO neurons (S35A5, DHTK1, STX3, IF3M, RN167, K1C14, DYHS, and MED13). In summary, RBM5 inhibition does not modify neuronal survival in primary mouse neurons in 2 clinically relevant models of excitotoxic insult, but RBM5 does regulate intracellular responses to injury in a sex-dependent manner.
Collapse
Affiliation(s)
- Kara Snyder
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL, 33602, USA
- University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Kiersten Gorse
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL, 33602, USA
- University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6th floor, Pittsburgh, PA, 15224, USA
| | - Travis C Jackson
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL, 33602, USA.
- University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
4
|
Bunik V. The Therapeutic Potential of Vitamins B1, B3 and B6 in Charcot-Marie-Tooth Disease with the Compromised Status of Vitamin-Dependent Processes. BIOLOGY 2023; 12:897. [PMID: 37508330 PMCID: PMC10376249 DOI: 10.3390/biology12070897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
Understanding the molecular mechanisms of neurological disorders is necessary for the development of personalized medicine. When the diagnosis considers not only the disease symptoms, but also their molecular basis, treatments tailored to individual patients may be suggested. Vitamin-responsive neurological disorders are induced by deficiencies in vitamin-dependent processes. These deficiencies may occur due to genetic impairments of proteins whose functions are involved with the vitamins. This review considers the enzymes encoded by the DHTKD1, PDK3 and PDXK genes, whose mutations are observed in patients with Charcot-Marie-Tooth (CMT) disease. The enzymes bind or produce the coenzyme forms of vitamins B1 (thiamine diphosphate, ThDP) and B6 (pyridoxal-5'-phosphate, PLP). Alleviation of such disorders through administration of the lacking vitamin or its derivative calls for a better introduction of mechanistic knowledge to medical diagnostics and therapies. Recent data on lower levels of the vitamin B3 derivative, NAD+, in the blood of patients with CMT disease vs. control subjects are also considered in view of the NAD-dependent mechanisms of pathological axonal degeneration, suggesting the therapeutic potential of vitamin B3 in these patients. Thus, improved diagnostics of the underlying causes of CMT disease may allow patients with vitamin-responsive disease forms to benefit from the administration of the vitamins B1, B3, B6, their natural derivatives, or their pharmacological forms.
Collapse
Affiliation(s)
- Victoria Bunik
- Belozersky Institute of Physicochemical Biology, Department of Biokinetics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
| |
Collapse
|
5
|
Mei Y, Jiang Y, Zhang Z, Zhang H. Muscle and bone characteristics of a Chinese family with spinal muscular atrophy, lower extremity predominant 1 (SMALED1) caused by a novel missense DYNC1H1 mutation. BMC Med Genomics 2023; 16:47. [PMID: 36882741 PMCID: PMC9990223 DOI: 10.1186/s12920-023-01472-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Spinal muscular atrophy, lower extremity predominant (SMALED) is a type of non-5q spinal muscular atrophy characterised by weakness and atrophy of lower limb muscles without sensory abnormalities. SMALED1 can be caused by dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene variants. However, the phenotype and genotype of SMALED1 may overlap with those of other neuromuscular diseases, making it difficult to diagnose clinically. Additionally, bone metabolism and bone mineral density (BMD) in patients with SMALED1 have never been reported. METHODS We investigated a Chinese family in which 5 individuals from 3 generations had lower limb muscle atrophy and foot deformities. Clinical manifestations and biochemical and radiographic indices were analysed, and mutational analysis was performed by whole-exome sequencing (WES) and Sanger sequencing. RESULTS A novel mutation in exon 4 of the DYNC1H1 gene (c.587T > C, p.Leu196Ser) was identified in the proband and his affected mother by WES. Sanger sequencing confirmed that the proband and 3 affected family members were carriers of this mutation. As leucine is a hydrophobic amino acid and serine is hydrophilic, the hydrophobic interaction resulting from mutation of amino acid residue 196 could influence the stability of the DYNC1H1 protein. Leg muscle magnetic resonance imaging of the proband revealed severe atrophy and fatty infiltration, and electromyographic recordings showed chronic neurogenic impairment of the lower extremities. Bone metabolism markers and BMD of the proband were all within normal ranges. None of the 4 patients had experienced fragility fractures. CONCLUSION This study identified a novel DYNC1H1 mutation and expands the spectrum of phenotypes and genotypes of DYNC1H1-related disorders. This is the first report of bone metabolism and BMD in patients with SMALED1.
Collapse
Affiliation(s)
- Yazhao Mei
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Yunyi Jiang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Hao Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| |
Collapse
|
6
|
Functional Versatility of the Human 2-Oxoadipate Dehydrogenase in the L-Lysine Degradation Pathway toward Its Non-Cognate Substrate 2-Oxopimelic Acid. Int J Mol Sci 2022; 23:ijms23158213. [PMID: 35897808 PMCID: PMC9367764 DOI: 10.3390/ijms23158213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The human 2-oxoadipate dehydrogenase complex (OADHc) in L-lysine catabolism is involved in the oxidative decarboxylation of 2-oxoadipate (OA) to glutaryl-CoA and NADH (+H+). Genetic findings have linked the DHTKD1 encoding 2-oxoadipate dehydrogenase (E1a), the first component of the OADHc, to pathogenesis of AMOXAD, eosinophilic esophagitis (EoE), and several neurodegenerative diseases. A multipronged approach, including circular dichroism spectroscopy, Fourier Transform Mass Spectrometry, and computational approaches, was applied to provide novel insight into the mechanism and functional versatility of the OADHc. The results demonstrate that E1a oxidizes a non-cognate substrate 2-oxopimelate (OP) as well as OA through the decarboxylation step, but the OADHc was 100-times less effective in reactions producing adipoyl-CoA and NADH from the dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3). The results revealed that the E2o is capable of producing succinyl-CoA, glutaryl-CoA, and adipoyl-CoA. The important conclusions are the identification of: (i) the functional promiscuity of E1a and (ii) the ability of the E2o to form acyl-CoA products derived from homologous 2-oxo acids with five, six, and even seven carbon atoms. The findings add to our understanding of both the OADHc function in the L-lysine degradative pathway and of the molecular mechanisms leading to the pathogenesis associated with DHTKD1 variants.
Collapse
|
7
|
Boyko AI, Karlina IS, Zavileyskiy LG, Aleshin VA, Artiukhov AV, Kaehne T, Ksenofontov AL, Ryabov SI, Graf AV, Tramonti A, Bunik VI. Delayed Impact of 2-Oxoadipate Dehydrogenase Inhibition on the Rat Brain Metabolism Is Linked to Protein Glutarylation. Front Med (Lausanne) 2022; 9:896263. [PMID: 35721081 PMCID: PMC9198357 DOI: 10.3389/fmed.2022.896263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 12/19/2022] Open
Abstract
Background The DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) oxidizes 2-oxoadipate—a common intermediate of the lysine and tryptophan catabolism. The mostly low and cell-specific flux through these pathways, and similar activities of OADH and ubiquitously expressed 2-oxoglutarate dehydrogenase (OGDH), agree with often asymptomatic phenotypes of heterozygous mutations in the DHTKD1 gene. Nevertheless, OADH/DHTKD1 are linked to impaired insulin sensitivity, cardiovascular disease risks, and Charcot-Marie-Tooth neuropathy. We hypothesize that systemic significance of OADH relies on its generation of glutaryl residues for protein glutarylation. Using pharmacological inhibition of OADH and the animal model of spinal cord injury (SCI), we explore this hypothesis. Methods The weight-drop model of SCI, a single intranasal administration of an OADH-directed inhibitor trimethyl adipoyl phosphonate (TMAP), and quantification of the associated metabolic changes in the rat brain employ established methods. Results The TMAP-induced metabolic changes in the brain of the control, laminectomized (LE) and SCI rats are long-term and (patho)physiology-dependent. Increased glutarylation of the brain proteins, proportional to OADH expression in the control and LE rats, represents a long-term consequence of the OADH inhibition. The proportionality suggests autoglutarylation of OADH, supported by our mass-spectrometric identification of glutarylated K155 and K818 in recombinant human OADH. In SCI rats, TMAP increases glutarylation of the brain proteins more than OADH expression, inducing a strong perturbation in the brain glutathione metabolism. The redox metabolism is not perturbed by TMAP in LE animals, where the inhibition of OADH increases expression of deglutarylase sirtuin 5. The results reveal the glutarylation-imposed control of the brain glutathione metabolism. Glutarylation of the ODP2 subunit of pyruvate dehydrogenase complex at K451 is detected in the rat brain, linking the OADH function to the brain glucose oxidation essential for the redox state. Short-term inhibition of OADH by TMAP administration manifests in increased levels of tryptophan and decreased levels of sirtuins 5 and 3 in the brain. Conclusion Pharmacological inhibition of OADH affects acylation system of the brain, causing long-term, (patho)physiology-dependent changes in the expression of OADH and sirtuin 5, protein glutarylation and glutathione metabolism. The identified glutarylation of ODP2 subunit of pyruvate dehydrogenase complex provides a molecular mechanism of the OADH association with diabetes.
Collapse
Affiliation(s)
- Alexandra I Boyko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Irina S Karlina
- N.V. Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lev G Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Vasily A Aleshin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Artem V Artiukhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander L Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey I Ryabov
- Russian Cardiology Research and Production Complex, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia V Graf
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Nano-, Bio-, Informational, Cognitive and Socio-Humanistic Sciences and Technologies, Moscow Institute of Physics and Technology, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, Council of National Research, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, Rome, Italy
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|