1
|
Zhang Y, Zhang H, Li M, Li Y, Wang ZR, Cheng W, Liu Y, Fang Z, Zheng A, Wang J, Ma F. Lnc-TPT1-AS1/CBP/ATIC Axis Mediated Purine Metabolism Activation Promotes Breast Cancer Progression. Cancer Sci 2025. [PMID: 40091780 DOI: 10.1111/cas.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/14/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
The purine biosynthetic pathway was recently identified to play a crucial role in breast cancer progression. However, little was known about the regulatory mechanisms of long non-coding RNA in breast cancer purine metabolism. In this study, we discovered that LncRNA TPT1-AS1 (TPT1-AS1) was downregulated in breast cancer tissues. Its introduction in breast cancer cells markedly suppressed tumor growth and metastasis in xenograft tumor models. Mass spectrometric analysis suggested that the purine biosynthetic pathway was activated in TPT1-AS1-knockdown MCF-7 cells. Inosine monophosphate (IMP), the product of de novo purine biosynthesis, was significantly upregulated. Mechanistically, we found that TPT1-AS1 could physically interact with CBP (CREB-binding protein), which consequently led to the loss of H3K27Ac in the promoter area of ATIC, the key enzyme of IMP synthesis. This process could block breast cancer purine metabolism and inhibit breast cancer progression. In conclusion, our findings illustrate the role of non-coding RNAs in breast cancer purine metabolism reprogramming and present a potential candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Yiyun Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Department of Endoscope, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hanyu Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingcui Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanling Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuo-Ran Wang
- Department of Clinical Medicine, First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Weilun Cheng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yansong Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhengbo Fang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ang Zheng
- The First Hospital of China Medical University, Shenyang, China
| | - Jingxuan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fei Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Cereja-Pantoja KBC, de Brito Azevedo TC, Vinagre LWMS, de Moraes FCA, da Costa Nunes GG, Monte N, de Alcântara AL, Cohen-Paes A, Fernandes MR, Batista Dos Santos SE, de Assumpção PP, Ribeiro Dos Santos ÂK, Burbano RMR, Guerrero RC, Carracedo Á, Carneiro Dos Santos NP. Alterations in pharmacogenetic genes and their implications for imatinib resistance in Chronic Myeloid Leukemia patients from an admixed population. Cancer Chemother Pharmacol 2024; 94:387-395. [PMID: 38888766 DOI: 10.1007/s00280-024-04689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Imatinib is the tyrosine kinase inhibitor used as the gold standard for the treatment of Chronic Myeloid Leukemia. However, about 30% of patients do not respond well to this therapy. Variants in drug administration, distribution, metabolism and excretion (ADME) genes play an important role in drug resistance especially in admixed populations. We investigated 129 patients diagnosed with Chronic Myeloid Leukemia treated with imatinib as first choice therapy. The participants of the study are highly admixed, populations that exhibit genetic diversity and complexity due to the contributions of multiple ancestral groups. Thus, the aim of this work was to investigate the association of 30 SNVs in genes related to response to treatment with Imatinibe in CML. Our results indicated that for the rs2290573 of the ULK3 gene, patients with the recessive AA genotype are three times more likely to develop resistance over time (secondary resistance) (p = 0.019, OR = 3.19, IC 95%= 1.21-8.36). Finally, we performed interaction analysis between the investigated variants and found several associations between SNVs and secondary resistance. We concluded that the variant rs2290573 of the ULK3 gene may be relevant for predicting treatment response of CML with imatinib, as well as possible treatment resistance. The use of predictive biomarkers is an important tool for therapeutic choice of patients, improving their quality of life and treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Natasha Monte
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, 66073-005, Brazil
| | | | - Amanda Cohen-Paes
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, 66073-005, Brazil
| | | | | | | | | | | | - Raquel Cruz Guerrero
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas - CiMUS, Universidad de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Ángel Carracedo
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas - CiMUS, Universidad de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | | |
Collapse
|
3
|
Prakash TC, Enkemann S. Current Progress on the Influence Human Genetics Has on the Efficacy of Tyrosine Kinase Inhibitors Used to Treat Chronic Myeloid Leukemia. Cureus 2024; 16:e56545. [PMID: 38646295 PMCID: PMC11027790 DOI: 10.7759/cureus.56545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
The use of tyrosine kinase inhibitors (TKIs) has become the mainstay of treatment in patients suffering from chronic myeloid leukemia (CML), an adult leukemia caused by a reciprocal translocation between chromosomes 9 and 22, which creates an oncogene resulting in a myeloproliferative neoplasm. These drugs function by inhibiting the ATP-binding site on the fusion oncoprotein and subsequently halting proliferative activity. The goal of this work is to investigate the current state of research into genetic factors that influence the efficacy of four FDA-approved TKIs used to treat CML. This overview attempts to identify genetic criteria that could be considered when choosing one drug over the others and to identify where more research is needed. Our results suggest that the usual liver enzymes impacting patient response may not be a major factor affecting the efficacy of imatinib, nilotinib, and bosutinib, and yet, that is where most of the past research has focused. More research is warranted on the impact that human polymorphisms of the CYP enzymes have on dasatinib. The impact of polymorphisms in UGT1A1 should be investigated thoroughly in other TKIs, not only nilotinib. The role of influx and efflux transporters has been inconsistent thus far, possibly due to failures to account for the multiple proteins that can transport TKIs and the impact that tumors have on transporter expression. Because physicians cannot currently use a patient's genetic profile to better target their treatment with TKIs, it is critical that more research be conducted on auxiliary pathways or off-target binding effects to generate new leads for further study. Hopefully, new avenues of research will help explain treatment failures and improve patient outcomes.
Collapse
Affiliation(s)
- Tara C Prakash
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Spartanburg, USA
| | - Steven Enkemann
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Spartanburg, USA
| |
Collapse
|
4
|
Luo HL, Lee YC, Chang YL, Hsu WC, Wu YT, Jhan JH, Lin HH, Wu YR, Ke HL, Liu HY. MicroRNA-145-5p suppresses cell proliferation, migration, and invasion in upper tract urothelial carcinoma by targeting 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase. J Cell Biochem 2023; 124:1324-1345. [PMID: 37475541 DOI: 10.1002/jcb.30449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Upper tract urothelial carcinoma (UTUC), including renal, pelvic, and ureteral carcinoma, has a high incidence rate in Taiwan, which is different from that in Western countries. Therefore, it is imperative to elucidate the mechanisms underlying UTUC growth and metastasis. To explore the function of miR-145-5p in UTUC, we transfected the BFTC909 cell line with miR-145-5p mimics and analyzed the differences in protein levels by performing two-dimensional polyacrylamide gel electrophoresis. Real-time polymerase chain reaction and Western blot analysis were used to analyze 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inositol monophosphate cyclohydrolase (ATIC) messenger RNA and protein levels. A dual-luciferase assay was performed to identify the target of miR-145-5p in ATIC. The effects of miR-145-5p and ATIC expression by cell transfection on cell proliferation, migration, and invasion were also assessed. miR-145-5p downregulated ATIC protein expression. High ATIC expression is associated with tumor stage, metastasis, recurrence, and a poor prognosis in patients with UTUC. Cell function assays revealed that ATIC knockdown inhibited the proliferation, migration, and invasive abilities of UTUC cells. In contrast, miR-145-5p affected the proliferation, migration, and invasive abilities of UTUC cells by directly targeting the 3'-untranslated regions of ATIC. Furthermore, we used RNA sequencing and Ingenuity Pathway Analysis to identify possible downstream genes regulated by ATIC and found that miR-145-5p regulated the protein levels of fibronectin 1, Slug, cyclin A2, cyclin B1, P57, and interferon-induced transmembrane 1 via ATIC. ATIC may be a valuable predictor of prognosis and a potential therapeutic target for UTUC.
Collapse
Affiliation(s)
- Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University and College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Lun Chang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University and College of Medicine, Kaohsiung, Taiwan
| | - Wei-Chi Hsu
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ting Wu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University and College of Medicine, Kaohsiung, Taiwan
| | - Jhen-Hao Jhan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Hui-Hui Lin
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Ru Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Lung Ke
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hui-Ying Liu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University and College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Martínez-Castillo M, Gómez-Romero L, Tovar H, Olarte-Carrillo I, García-Laguna A, Barranco-Lampón G, De la Cruz-Rosas A, Martínez-Tovar A, Hernández-Zavala A, Córdova EJ. Genetic alterations in the BCR-ABL1 fusion gene related to imatinib resistance in chronic myeloid leukemia. Leuk Res 2023; 131:107325. [PMID: 37302352 DOI: 10.1016/j.leukres.2023.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
Use of the potent tyrosine kinase inhibitor imatinib as the first-line treatment in chronic myeloid leukemia (CML) has decreased mortality from 20% to 2%. Approximately 30% of CML patients experience imatinib resistance, however, largely because of point mutations in the kinase domain of the BCR-ABL1 fusion gene. The aim of this study was to use next-generation sequencing (NGS) to identify mutations related to imatinib resistance. The study included 22 patients diagnosed with CML and experiencing no clinical response to imatinib. Total RNA was used for cDNA synthesis, with amplification of a fragment encompassing the BCR-ABL1 kinase domain using a nested-PCR approach. Sanger and NGS were applied to detect genetic alterations. HaplotypeCaller was used for variant calling, and STAR-Fusion software was applied for fusion breakpoint identification. After sequencing analysis, F311I, F317L, and E450K mutations were detected respectively in three different participants, and in another two patients, single nucleotide variants in BCR (rs9608100, rs140506, rs16802) and ABL1 (rs35011138) were detected. Eleven patients carried e14a2 transcripts, nine had e13a2 transcripts, and both transcripts were identified in one patient. One patient had co-expression of e14a2 and e14a8 transcripts. The results identify candidate single nucleotide variants and co-expressed BCR-ABL1 transcripts in cellular resistance to imatinib.
Collapse
Affiliation(s)
- Macario Martínez-Castillo
- Section of Research and Postgraduate Studies, Superior School of Medicine, National Institute Polytechnique, Casco de Santo Tomás, 11350 Mexico City, Mexico
| | - Laura Gómez-Romero
- Bioinformatics Department, National Institute of Genomic Medicine, Arenal Tepepan, 14610 Mexico City, Mexico
| | - Hugo Tovar
- Computational Genomics Division, National Institute of Genomic Medicine, Arenal Tepepan, 14610 Mexico City, Mexico
| | - Irma Olarte-Carrillo
- Molecular Biology Laboratory, Service of Hematology, Hospital General de Mexico "Dr. Eduardo Licega" Dr Balmis, 06720 Mexico City, Mexico
| | - Anel García-Laguna
- Molecular Biology Laboratory, Service of Hematology, Hospital General de Mexico "Dr. Eduardo Licega" Dr Balmis, 06720 Mexico City, Mexico
| | - Gilberto Barranco-Lampón
- Molecular Biology Laboratory, Service of Hematology, Hospital General de Mexico "Dr. Eduardo Licega" Dr Balmis, 06720 Mexico City, Mexico
| | - Adrián De la Cruz-Rosas
- Molecular Biology Laboratory, Service of Hematology, Hospital General de Mexico "Dr. Eduardo Licega" Dr Balmis, 06720 Mexico City, Mexico
| | - Adolfo Martínez-Tovar
- Molecular Biology Laboratory, Service of Hematology, Hospital General de Mexico "Dr. Eduardo Licega" Dr Balmis, 06720 Mexico City, Mexico
| | - Araceli Hernández-Zavala
- Section of Research and Postgraduate Studies, Superior School of Medicine, National Institute Polytechnique, Casco de Santo Tomás, 11350 Mexico City, Mexico
| | - Emilio J Córdova
- Oncogenomics Consortium Laboratory, National Institute of Genomic Medicine, Clinic Research, Arenal Tepepan, 14610 Mexico City, Mexico.
| |
Collapse
|
6
|
The Future of Pharmacogenomics Requires New Discoveries and Innovative Education. Genes (Basel) 2022; 13:genes13091575. [PMID: 36140743 PMCID: PMC9498360 DOI: 10.3390/genes13091575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
|