1
|
Luo L, Zhang L, Gu R, Ni S, Yu J, Gao Y, Fang C. Genome-Wide Identification and Functional Analysis of AP2/ERF Gene Family in Passiflora edulis Sims. PLANTS (BASEL, SWITZERLAND) 2025; 14:645. [PMID: 40094515 PMCID: PMC11901831 DOI: 10.3390/plants14050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
The Apetala2/Ethylene Responsive Factor (AP2/ERF) family represents a critical group of transcription factors in plants, recognized for their roles in growth, development, fruit ripening, and postharvest processes. This study aimed to identify and characterize the AP2/ERF gene family in passion fruit (Passiflora edulis Sims) and investigate their potential roles in flavor enhancement. A total of 91 PeAP2/ERF genes were identified and classified into five subfamilies. Chromosome localization and collinearity analysis demonstrated their distribution across all nine chromosomes of passion fruit, with tandem duplication events identified as a key driver of family expansion. Exon-intron configurations and motif compositions were highly conserved among PeAP2/ERF genes. Promoter cis-acting element analysis indicated potential regulation by environmental signals, including abiotic and biotic stresses, as well as hormonal cues. Postharvest storage induced the expression of 59 PeAP2/ERF genes over time. Notably, PeAP2-10 was found to enhance the expression of PeSTP6, a gene associated with sugar transport, suggesting its potential influence on the flavor profile of passion fruit. These findings provide valuable insights into the functional roles of PeAP2/ERF genes in passion fruit, highlighting their significance in postharvest management and flavor quality enhancement strategies.
Collapse
Affiliation(s)
- Lanjun Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Liping Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Ronghao Gu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Shihao Ni
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Jingyao Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Life and Health Sciences, Hainan University, Haikou 570288, China
| | - Yachao Gao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Life and Health Sciences, Hainan University, Haikou 570288, China
| | - Chuanying Fang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Baoting Research Institute, Hainan University, Baoting 572300, China
| |
Collapse
|
2
|
Liu Y, Cai L, Zhu J, Lin Y, Chen M, Zhang H, Fan X, Xu K, Wu B. Genome-wide identification, structural characterization and expression profiling of AP2/ERF gene family in bayberry (Myrica rubra). BMC PLANT BIOLOGY 2024; 24:1139. [PMID: 39604860 PMCID: PMC11603639 DOI: 10.1186/s12870-024-05847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Bayberry is the most economically significant fruit within the Myricaceae family, having high nutritional and medicinal value. The AP2/ERF family is a class of transcription factors found mainly in plants. However, the bayberry AP2/ERF gene family has not previously been studied. RESULTS In this study, 113 members of the bayberry AP2/ERF gene family were identified. According to the phylogenetic tree, the members of this group are divided into three subfamilies, namely AP2, ERF, and DREB. The gene structure and conserved motifs were analyzed. Chromosome localization showed that 95 genes were unevenly distributed on 8 chromosomes and 18 genes were located on the skeleton. Gene collinearity analysis of the bayberry AP2/ERF gene family showed 12 segmental duplication events, involving 21 AP2/ERFs. In addition, we further investigated the evolutionary relationship of the AP2/ERF gene family between bayberry and six other species. It was found that bayberry was most closely related to Populus trichocarpa and Malus pumila, with 153 and 141 homologous gene pairs, respectively. Cis-acting elements indicated that AP2/ERFs were related to phytohormone responses, light response, abiotic and biotic stress tolerance. Transcriptomic data showed that the expression pattern of AP2/ERF gene was different in bayberry space electric field treatment and at different stages of fruit development. The results of GO annotation revealed the biological processes, cellular component and molecular function that the AP2/ERF genes were involved. And KEGG enrichment analysis indicated that these genes were mainly clustered in genetic information processing and metabolism pathways. CONCLUSIONS The AP2/ERF gene was identified in the genome of bayberry, and its structure, conserved motif, and phylogenetic relationship were analyzed. These findings of this study serve as a reference for the genome-wide identification of the AP2/ERF gene family in other species and groundwork for future research on the function of AP2/ERF genes in bayberry.
Collapse
Affiliation(s)
- Yumeng Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Linqi Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jiali Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yue Lin
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Minghui Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Huiling Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xiurun Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China.
| | - Boping Wu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Chen G, Shao T, Zhou Y, Chen F, Zhang D, Gu H, Yue Y, Wang L, Yang X. Analysis of the Aging-Related AP2/ERF Transcription Factor Gene Family in Osmanthus fragrans. Int J Mol Sci 2024; 25:8025. [PMID: 39125596 PMCID: PMC11312093 DOI: 10.3390/ijms25158025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024] Open
Abstract
Ethylene-Responsive Factor (ERF) is a key element found in the middle and lower reaches of the ethylene signal transduction pathway. It is widely distributed in plants and plays important roles in plant growth and development, hormone signal transduction, and various stress processes. Although there is research on AP/ERF family members, research on AP2/ERF in Osmanthus fragrans is lacking. Thus, in this work, AP2/ERF in O. fragrans was extensively and comprehensively analyzed. A total of 298 genes encoding OfAP2/ERF proteins with complete AP2/ERF domains were identified. Based on the number of AP2/ERF domains and the similarity among amino acid sequences between AP2/ERF proteins from A. thaliana and O. fragrans, the 298 putative OfAP2/ERF proteins were divided into four different families, including AP2 (45), ERF (247), RAV (5), and SOLOIST (1). In addition, the exon-intron structure characteristics of these putative OfAP2/ERF genes and the conserved protein motifs of their encoded OfAP2/ERF proteins were analyzed, and the results were found to be consistent with those of the population classification. A tissue-specific analysis showed the spatiotemporal expression of OfAP2/ERF in the stems and leaves of O. fragrans at different developmental stages. Specifically, 21 genes were not expressed in any tissue, while high levels of expression were found for 25 OfAP2/ERF genes in several tissues, 60 genes in the roots, 34 genes in the stems, 37 genes in young leaves, 34 genes in old leaves, 32 genes in the early flowering stage, 18 genes in the full flowering stage, and 37 genes in the late flowering stage. Quantitative RT-PCR experiments showed that OfERF110a and OfERF110b had the highest expression levels at the full-bloom stage (S4), and this gradually decreased with the senescence of petals. The expression of OfERF119c decreased first and then increased, while the expression levels of OfERF4c and OfERF5a increased constantly. This indicated that these genes may play roles in flower senescence and the ethylene response. In the subsequent subcellular localization experiments, we found that ERF1-4 was localized in the nucleus, indicating that it was expressed in the nucleus. In yeast self-activation experiments, we found that OfERF112, OfERF228, and OfERF23 had self-activation activity. Overall, these results suggest that OfERFs may have the function of regulating petal senescence in O. fragrans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiulian Yang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; (G.C.); (T.S.); (Y.Z.); (F.C.); (D.Z.); (H.G.); (Y.Y.); (L.W.)
| |
Collapse
|
4
|
Wei Y, Kong Y, Li H, Yao A, Han J, Zhang W, Li X, Li W, Han D. Genome-Wide Characterization and Expression Profiling of the AP2/ERF Gene Family in Fragaria vesca L. Int J Mol Sci 2024; 25:7614. [PMID: 39062854 PMCID: PMC11277216 DOI: 10.3390/ijms25147614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The wild strawberry (Fragaria vesca L.; F. vesca) represents a resilient and extensively studied model organism. While the AP2/ERF gene family plays a pivotal role in plant development, its exploration within F. vesca remains limited. In this study, we characterized the AP2/ERF gene family in wild strawberries using the recently released genomic data (F. vesca V6.0). We conducted an analysis of the gene family expansion pattern, we examined gene expression in stem segments and leaves under cold conditions, and we explored its functional attributes. Our investigation revealed that the FvAP2/ERF family comprises 86 genes distributed among four subfamilies: AP2 (17), RAV (6), ERF (62), and Soloist (1). Tandem and segmental duplications significantly contributed to the growth of this gene family. Furthermore, predictive analysis identified several cis-acting elements in the promoter region associated with meristematic tissue expression, hormone regulation, and resistance modulation. Transcriptomic analysis under cold stress unveiled diverse responses among multiple FvAP2/ERFs in stem segments and leaves. Real-time fluorescence quantitative reverse transcription PCR (RT-qPCR) results confirmed elevated expression levels of select genes following the cold treatment. Additionally, overexpression of FvERF23 in Arabidopsis enhanced cold tolerance, resulting in significantly increased fresh weight and root length compared to the wild-type control. These findings lay the foundation for further exploration into the functional roles of FvAP2/ERF genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Y.K.); (H.L.); (A.Y.); (J.H.); (W.Z.); (X.L.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Y.K.); (H.L.); (A.Y.); (J.H.); (W.Z.); (X.L.)
| |
Collapse
|
5
|
Lei C, Dang Z, Zhu M, Zhang M, Wang H, Chen Y, Zhang H. Identification of the ERF gene family of Mangifera indica and the defense response of MiERF4 to Xanthomonas campestris pv. mangiferaeindicae. Gene 2024; 912:148382. [PMID: 38493974 DOI: 10.1016/j.gene.2024.148382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
An important regulatory role for ethylene-responsive transcription factors (ERFs) is in plant growth and development, stress response, and hormone signaling. However, AP2/ERF family genes in mango have not been systematically studied. In this study, a total of 113 AP2/ERF family genes were identified from the mango genome and phylogenetically classified into five subfamilies: AP2 (28 genes), DREB (42 genes), ERF (33 genes), RAV (6 genes), and Soloist (4 genes). Of these, the ERF family, in conjunction with Arabidopsis and rice, forms a phylogenetic tree divided into seven groups, five of which have MiERF members. Analysis of gene structure and cis-elements showed that each MiERF gene contains only one AP2 structural domain, and that MiERF genes contain a large number of cis-elements associated with hormone signaling and stress response. Collinearity tests revealed a high degree of homology between MiERFs and CsERFs. Tissue-specific and stress-responsive expression profiling revealed that MiERF genes are primarily involved in the regulation of reproductive growth and are differentially and positively expressed in response to external hormones and pathogenic bacteria. Physiological results from a gain-of-function analysis of MiERF4 transiently overexpressed in tobacco and mango showed that transient expression of MiERF4 resulted in decreased colony count and callose deposition, as well as varying degrees of response to hormonal signals such as ETH, JA, and SA. Thus, MiERF4 may be involved in the JA/ETH signaling pathway to enhance plant defense against pathogenic bacteria. This study provides a basis for further research on the function and regulation of MiERF genes and lays a foundation for the selection of disease-resistant genes in mango.
Collapse
Affiliation(s)
- Chen Lei
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhiguo Dang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Min Zhu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Mengting Zhang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Huiliang Wang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yeyuan Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China.
| | - He Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
6
|
Ma L, Shi Q, Ma Q, Wang X, Chen X, Han P, Luo Y, Hu H, Fei X, Wei A. Genome-wide analysis of AP2/ERF transcription factors that regulate fruit development of Chinese prickly ash. BMC PLANT BIOLOGY 2024; 24:565. [PMID: 38879490 PMCID: PMC11179286 DOI: 10.1186/s12870-024-05244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/04/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND AP2/ERF is a large family of plant transcription factor proteins that play essential roles in signal transduction, plant growth and development, and responses to various stresses. The AP2/ERF family has been identified and verified by functional analysis in various plants, but so far there has been no comprehensive study of these factors in Chinese prickly ash. Phylogenetic, motif, and functional analyses combined with transcriptome analysis of Chinese prickly ash fruits at different developmental stages (30, 60, and 90 days after anthesis) were conducted in this study. RESULTS The analysis identified 146 ZbAP2/ERF genes that could be classified into 15 subgroups. The motif analysis revealed the presence of different motifs or elements in each group that may explain the functional differences between the groups. ZbERF13.2, ZbRAP2-12, and ZbERF2.1 showed high levels of expression in the early stages of fruit development. ZbRAP2-4, and ZbERF3.1 were significantly expressed at the fruit coloring stage (R2 and G2). ZbERF16 were significantly expressed at fruit ripening and expression level increased as the fruit continued to develop. Relative gene expression levels of 6 representative ZbAP2/ERFs assessed by RT-qPCR agreed with transcriptome analysis results. CONCLUSIONS These genes identified by screening can be used as candidate genes that affect fruit development. The results of the analysis can help guide future genetic improvement of Chinese prickly ash and enrich our understanding of AP2/ERF transcription factors and their regulatory functions in plants.
Collapse
Affiliation(s)
- Lei Ma
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
| | - Qin Ma
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xiaona Wang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xin Chen
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Peilin Han
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Yingli Luo
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| |
Collapse
|
7
|
Zhang X, Peng W, Chen H, Xing H. BnAP2-12 overexpression delays ramie flowering: evidence from AP2/ERF gene expression. FRONTIERS IN PLANT SCIENCE 2024; 15:1367837. [PMID: 38590749 PMCID: PMC10999622 DOI: 10.3389/fpls.2024.1367837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Introduction The APETALA2/ethylene response factor (AP2/ERF) superfamily plays a significant role in regulating plant gene expression in response to growth and development. To date, there have been no studies into whether the ramie AP2/ERF genes are involved in the regulation of flower development. Methods Here, 84 BnAP2/ERF members were identified from the ramie genome database, and various bioinformatics data on the AP2/ERF gene family, structure, replication, promoters and regulatory networks were analysed. BnAP2-12 was transferred into Arabidopsis through the flower-dipping method. Results Phylogenetic analysis classified the 84 BnAP2/ERF members into four subfamilies: AP2 (18), RAV (3), ERF (42), and DREB (21). The functional domain analysis of genes revealed 10 conserved motifs. Genetic mapping localised the 84 members on 14 chromosomes, among which chromosomes 1, 3, 5, and 8 had more members. Collinearity analysis revealed that 43.37% possibly resulted from replication events during the evolution of the ramie genome. Promoter sequence analysis identified classified cis-acting elements associated with plant growth and development, and responses to stress, hormones, and light. Transcriptomic comparison identified 3,635 differentially expressed genes (DEGs) between male and female flowers (1,803 and 1,832 upregulated and downregulated genes, respectively). Kyoto Encyclopaedia of Genes and Genomes pathway analysis categorised DEGs involved in metabolic pathways and biosynthesis of secondary metabolites. Gene Ontology enrichment analysis further identified enriched genes associated with pollen and female gamete formations. Of the 84 BnAP2/ERFs genes, 22 and 8 upregulated and downregulated genes, respectively, were present in female flowers. Co-expression network analysis identified AP2/ERF members associated with flower development, including BnAP2-12. Subcellular localisation analysis showed that the BnAP2-12 protein is localised in the nucleus and cell membrane. Overexpression BnAP2-12 delayed the flowering time of Arabidopsis thaliana. Conclusion These findings provide insights into the mechanism of ramie flower development.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Agricultural College of Hunan Agricultural University, Changsha, China
- Ramie Research Institute of Hunan Agricultural University, Changsha, China
| | - Wenxian Peng
- Ramie Research Institute of Hunan Agricultural University, Changsha, China
- Changsha Tobacco Company, Ningxiang, China
| | - Hao Chen
- Agricultural College of Hunan Agricultural University, Changsha, China
| | - Hucheng Xing
- Agricultural College of Hunan Agricultural University, Changsha, China
- Ramie Research Institute of Hunan Agricultural University, Changsha, China
- Hunan Key Laboratory of Germplasm Resources Innovation and Resource Utilization Crop Breeding Center, Changsha, China
- Hunan Provincial Engineering Technology Research Center of Grass Crop Germplasm Innovation and Utilization, Changsha, China
| |
Collapse
|
8
|
Zhu X, Wang B, Liu W, Wei X, Wang X, Du X, Liu H. Genome-wide analysis of AP2/ERF gene and functional analysis of CqERF24 gene in drought stress in quinoa. Int J Biol Macromol 2023; 253:127582. [PMID: 37866580 DOI: 10.1016/j.ijbiomac.2023.127582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Quinoa is a crop with high nutritional value and strong stress resistance. AP2/ERF transcription factors play a key role in plant growth and development. In this study, 148 AP2/ERF genes were identified in quinoa, which were divided into 5 subfamilies, including ERF, AP2, DREB, RAV and Soloist. The results showed that the number of introns ranged from 0 to 11, and the Motif 1-Motif 4 was highly conserved in most CqAP2/ERF proteins. The 148 CqAP2/ERF genes were distributed on 19 chromosomes. There were 93 pairs of duplicating genes in this family, and gene duplication played a critical role in the expansion of this family. Protein-protein interaction indicated that the proteins in CqAP2/ERF subfamily exhibited complex interactions, and GO enrichment analysis indicated that 148 CqAP2/ERF proteins were involved in transcription factor activity. In addition, CqAP2/ERF gene contains a large number of elements related to hormones in promoter region (IAA, GA, SA, ABA and MeJA) and stresses (salt, drought, low temperature and anaerobic induction). Transcriptome analysis under drought stress indicated that most of the CqAP2/ERF genes were responsive to drought stress, and subcellular localization indicated that CqERF24 was location in the nucleus, qRT-PCR results also showed that most of the genes such as CqERF15, CqERF24, CqDREB03, CqDREB14, CqDREB37 and CqDREB43 also responded to drought stress in roots and leaves. Overexpression of CqERF24 in Arabidopsis thaliana enhanced drought resistance by increasing antioxidant enzyme activity and activation-related stress genes, and the gene is sensitive to ABA, while silencing CqERF24 in quinoa decreased drought tolerance. In addition, overexpression of CqERF24 in quinoa calli enhanced resistance to mannitol. These results lay a solid foundation for further study on the role of AP2/ERF family genes in quinoa under drought stress.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenyu Liu
- Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xian Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuefeng Du
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Haixun Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
Genome-Wide Analysis of the Almond AP2/ERF Superfamily and Its Functional Prediction during Dormancy in Response to Freezing Stress. BIOLOGY 2022; 11:biology11101520. [PMID: 36290423 PMCID: PMC9598233 DOI: 10.3390/biology11101520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary The ethylene-responsive element (AP2/ERF) is one of the key and conserved transcription factors (TFs) in plants, and it plays a crucial role in regulating plant growth, development, and stress response. The cultivated almond in Xinjiang is often affected by short-term ultralow temperature freezing stress during the winter dormancy period, resulting in the death of large-scale almond plants. In this study, we conducted the first genome-wide analysis of the PdAP2/ERF family in almond, including protein physicochemical properties, phylogenetic relationships, motif types, gene structures, gene replication types, collinearity relationships, and cis-element types in promoter regions. We further analyzed the expression patterns of the PdAP2/ERF gene in different tissues of almond and under freezing stress at different temperatures in annual dormant branches using transcriptome data. In addition, we also analyzed the expression levels of 13 PdAP2/ERF genes in four tissues of almond and in annual dormant branches treated with freezing stress at different temperatures using fluorescence quantitative technology. This study laid the foundation for further exploring the function of the PdAP2/ERF gene in almond. Abstract The AP2/ERF transcription factor family is one of the largest transcription factor families in plants and plays an important role in regulating plant growth and development and the response to biotic and abiotic stresses. However, there is no report on the AP2/ERF gene family in almond (Prunus dulcis). In this study, a total of 136 PdAP2/ERF genes were identified from the almond genome, and their protein physicochemical properties were analyzed. The PdAP2/ERF members were divided into five subgroups: AP2, RAV, ERF, DREB, and Soloist. The PdAP2/ERF members in each subgroup had conserved motif types and exon/intron numbers. PdAP2/ERFS members are distributed on eight chromosomes, with 22 pairs of segmental duplications and 28 pairs of tandem duplications. We further explored the colinear relationship between almond and Arabidopsis thaliana, Oryza sativa, Malus domestica, and Prunus persicaAP2/ERF genes and their evolution. The results of cis-acting elements showed that PdAP2/ERF members are widely involved in various processes, such as growth and development, hormone regulation, and stress response. The results based on transcriptome expression patterns showed that PdAP2/ERF genes had significant tissue-specific expression characteristics and were involved in the response of annual dormant branches of almond to low-temperature freezing stress. In addition, the fluorescence quantitative relative expression results of 13 representative PdAP2/ERF genes in four tissues of ‘Wanfeng’ almond and under six low-temperature freezing treatments of annual dormant branches were consistent with the transcriptome results. It is worth noting that the fluorescence quantitative expression level showed that the PdERF24 gene was extremely significant at −30 °C, suggesting that this gene may play an important role in the response of almond dormancy to ultralow temperature freezing stress. Finally, we identified 7424 and 6971 target genes based on AP2 and ERF/DREB DNA-binding sites, respectively. The GO and KEGG enrichment results showed that these target genes play important roles in protein function and multiple pathways. In summary, we conducted bioinformatics and expression pattern studies on PdAP2/ERF genes, including 13 PdAP2/ERF genes, and performed fluorescence quantitative analysis of annual dormant shoots under different low-temperature freezing stress treatments to understand the tolerance of almond dormancy to freezing stress and suggest future improvements.
Collapse
|
10
|
Genome-Wide Analysis of the ERF Family and Identification of Potential Genes Involved in Fruit Ripening in Octoploid Strawberry. Int J Mol Sci 2022; 23:ijms231810550. [PMID: 36142464 PMCID: PMC9502190 DOI: 10.3390/ijms231810550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ethylene response factors (ERFs) belonging to the APETALA2/ERF superfamily acted at the end of the ethylene signaling pathway, and they were found to play important roles in plant growth and development. However, the information of ERF genes in strawberry and their involvement in fruit ripening have been limited. Here, a total of 235 ERF members were identified from 426 AP2/ERF genes at octoploid strawberry genome level and classified into six subgroups according to their sequence characteristics and phylogenetic relationship. Conserved motif and gene structure analysis supported the evolutionary conservation of FaERFs. Syntenic analysis showed that four types of duplication events occurred during the expansion of FaERF gene family. Of these, WGD/segmental duplication played a major role. Transcriptomic data of FaERF genes during fruit ripening and in response to abscisic acid screened one activator (FaERF316) and one repressor (FaERF118) that were involved in fruit ripening. Transcriptional regulation analysis showed some transcription factors related to ripening such as ABI4, TCP15, and GLK1 could bind to FaERF316 or FaERF118 promoters, while protein-protein interaction analysis displayed some proteins associated with plant growth and development could interact with FaERF118 or FaERF316. These results suggested that FaERF118 and FaERF316 were potential genes to regulate strawberry ripening. In summary, the present study provides the comprehensive and systematic information on FaERF family evolution and gains insights into FaERF's potential regulatory mechanism in strawberry ripening.
Collapse
|