1
|
Eisfeldt J, Higginbotham EJ, Lenner F, Howe J, Fernandez BA, Lindstrand A, Scherer SW, Feuk L. Resolving complex duplication variants in autism spectrum disorder using long-read genome sequencing. Genome Res 2024; 34:1763-1773. [PMID: 39472019 DOI: 10.1101/gr.279263.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/27/2024] [Indexed: 11/22/2024]
Abstract
Rare or de novo structural variation, primarily in the form of copy number variants, is detected in 5%-10% of autism spectrum disorder (ASD) families. While complex structural variants involving duplications can generally be detected using microarray or short-read genome sequencing (GS), these methods frequently fail to characterize breakpoints at nucleotide resolution, requiring additional molecular methods for validation and fine-mapping. Here, we use Oxford Nanopore Technologies PromethION long-read GS to characterize complex genomic rearrangements (CGRs) involving large duplications that segregate with ASD in five families. In total, we investigated 13 CGR carriers and were able to resolve all breakpoint junctions at nucleotide resolution. While all breakpoints were identified, the precise genomic architecture of one rearrangement remained unresolved with three different potential structures. The findings in two families include potential fusion genes formed through duplication rearrangements, involving IL1RAPL1-DMD and SUPT16H-CHD8 In two of the families originating from the same geographical region, an identical rearrangement involving ANK2 was identified, which likely represents a founder variant. In addition, we analyze methylation status directly from the long-read data, allowing us to assess the activity of rearranged genes and regulatory regions. Investigation of methylation across the CGRs reveals aberrant methylation status in carriers across a rearrangement affecting the CREBBP locus. In aggregate, our results demonstrate the utility of nanopore sequencing to pinpoint CGRs associated with ASD in five unrelated families, and highlight the importance of a gene-centric description of disease-associated complex chromosomal rearrangements.
Collapse
Affiliation(s)
- Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Edward J Higginbotham
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Felix Lenner
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, 751 85 Uppsala, Sweden
| | - Jennifer Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Bridget A Fernandez
- Department of Pediatrics and The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, California 90033, USA
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Molecular Genetics, McLaughlin Centre, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, 751 85 Uppsala, Sweden;
| |
Collapse
|
2
|
Al-Beltagi M. Pre-autism: What a paediatrician should know about early diagnosis of autism. World J Clin Pediatr 2023; 12:273-294. [PMID: 38178935 PMCID: PMC10762597 DOI: 10.5409/wjcp.v12.i5.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023] Open
Abstract
Autism, also known as an autism spectrum disorder, is a complex neurodevelopmental disorder usually diagnosed in the first three years of a child's life. A range of symptoms characterizes it and can be diagnosed at any age, including adolescence and adulthood. However, early diagnosis is crucial for effective management, prognosis, and care. Unfortunately, there are no established fetal, prenatal, or newborn screening programs for autism, making early detection difficult. This review aims to shed light on the early detection of autism prenatally, natally, and early in life, during a stage we call as "pre-autism" when typical symptoms are not yet apparent. Some fetal, neonatal, and infant biomarkers may predict an increased risk of autism in the coming baby. By developing a biomarker array, we can create an objective diagnostic tool to diagnose and rank the severity of autism for each patient. These biomarkers could be genetic, immunological, hormonal, metabolic, amino acids, acute phase reactants, neonatal brainstem function biophysical activity, behavioral profile, body measurements, or radiological markers. However, every biomarker has its accuracy and limitations. Several factors can make early detection of autism a real challenge. To improve early detection, we need to overcome various challenges, such as raising community awareness of early signs of autism, improving access to diagnostic tools, reducing the stigma attached to the diagnosis of autism, and addressing various culturally sensitive concepts related to the disorder.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Algahrbia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Manama, Bahrain
| |
Collapse
|
3
|
Alibutud R, Hansali S, Cao X, Zhou A, Mahaganapathy V, Azaro M, Gwin C, Wilson S, Buyske S, Bartlett CW, Flax JF, Brzustowicz LM, Xing J. Structural Variations Contribute to the Genetic Etiology of Autism Spectrum Disorder and Language Impairments. Int J Mol Sci 2023; 24:13248. [PMID: 37686052 PMCID: PMC10487745 DOI: 10.3390/ijms241713248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restrictive interests and/or repetitive behaviors and deficits in social interaction and communication. ASD is a multifactorial disease with a complex polygenic genetic architecture. Its genetic contributing factors are not yet fully understood, especially large structural variations (SVs). In this study, we aimed to assess the contribution of SVs, including copy number variants (CNVs), insertions, deletions, duplications, and mobile element insertions, to ASD and related language impairments in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Within the cohort, ~77% of the families contain SVs that followed expected segregation or de novo patterns and passed our filtering criteria. These SVs affected 344 brain-expressed genes and can potentially contribute to the genetic etiology of the disorders. Gene Ontology and protein-protein interaction network analysis suggested several clusters of genes in different functional categories, such as neuronal development and histone modification machinery. Genes and biological processes identified in this study contribute to the understanding of ASD and related neurodevelopment disorders.
Collapse
Affiliation(s)
- Rohan Alibutud
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sammy Hansali
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Anbo Zhou
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Vaidhyanathan Mahaganapathy
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Marco Azaro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Christine Gwin
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sherri Wilson
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Steven Buyske
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Christopher W. Bartlett
- The Steve Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Judy F. Flax
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Linda M. Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Bovari-Biri J, Garai K, Banfai K, Csongei V, Pongracz JE. miRNAs as Predictors of Barrier Integrity. BIOSENSORS 2023; 13:bios13040422. [PMID: 37185497 PMCID: PMC10136429 DOI: 10.3390/bios13040422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The human body has several barriers that protect its integrity and shield it from mechanical, chemical, and microbial harm. The various barriers include the skin, intestinal and respiratory epithelia, blood-brain barrier (BBB), and immune system. In the present review, the focus is on the physical barriers that are formed by cell layers. The barrier function is influenced by the molecular microenvironment of the cells forming the barriers. The integrity of the barrier cell layers is maintained by the intricate balance of protein expression that is partly regulated by microRNAs (miRNAs) both in the intracellular space and the extracellular microenvironment. The detection of changes in miRNA patterns has become a major focus of diagnostic, prognostic, and disease progression, as well as therapy-response, markers using a great variety of detection systems in recent years. In the present review, we highlight the importance of liquid biopsies in assessing barrier integrity and challenges in differential miRNA detection.
Collapse
Affiliation(s)
- Judit Bovari-Biri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Veronika Csongei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| |
Collapse
|
5
|
Wong A, Zhou A, Cao X, Mahaganapathy V, Azaro M, Gwin C, Wilson S, Buyske S, Bartlett CW, Flax JF, Brzustowicz LM, Xing J. MicroRNA and MicroRNA-Target Variants Associated with Autism Spectrum Disorder and Related Disorders. Genes (Basel) 2022; 13:1329. [PMID: 35893067 PMCID: PMC9329941 DOI: 10.3390/genes13081329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a childhood neurodevelopmental disorder with a complex and heterogeneous genetic etiology. MicroRNA (miRNA), a class of small non-coding RNAs, could regulate ASD risk genes post-transcriptionally and affect broad molecular pathways related to ASD and associated disorders. Using whole-genome sequencing, we analyzed 272 samples in 73 families in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Families with at least one ASD patient were recruited and were further assessed for language impairment, reading impairment, and other associated phenotypes. A total of 5104 miRNA variants and 1,181,148 3' untranslated region (3' UTR) variants were identified in the dataset. After applying several filtering criteria, including population allele frequency, brain expression, miRNA functional regions, and inheritance patterns, we identified high-confidence variants in five brain-expressed miRNAs (targeting 326 genes) and 3' UTR miRNA target regions of 152 genes. Some genes, such as SCP2 and UCGC, were identified in multiple families. Using Gene Ontology overrepresentation analysis and protein-protein interaction network analysis, we identified clusters of genes and pathways that are important for neurodevelopment. The miRNAs and miRNA target genes identified in this study are potentially involved in neurodevelopmental disorders and should be considered for further functional studies.
Collapse
Affiliation(s)
- Anthony Wong
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Anbo Zhou
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Vaidhyanathan Mahaganapathy
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Marco Azaro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Christine Gwin
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sherri Wilson
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Steven Buyske
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Christopher W. Bartlett
- The Steve & Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA;
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Judy F. Flax
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Linda M. Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|