1
|
Yu P, Liu B, Dong C, Chang Y. Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases. Cells 2025; 14:619. [PMID: 40277944 PMCID: PMC12025799 DOI: 10.3390/cells14080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions.
Collapse
Affiliation(s)
- Peijie Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Sahoo SS, Khiami M, Wlodarski MW. Inducible pluripotent stem cell models to study bone marrow failure and MDS predisposition syndromes. Exp Hematol 2025; 143:104669. [PMID: 39491640 DOI: 10.1016/j.exphem.2024.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as powerful tools for in vitro modeling of bone marrow failure (BMF) syndromes and hereditary conditions predisposing to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). This review synthesizes recent advances in iPSC-based disease modeling for various inherited BMF/MDS disorders, including Fanconi anemia, dyskeratosis congenita, Diamond Blackfan anemia syndrome, Shwachman-Diamond syndrome, and severe congenital neutropenia as well as GATA2, RUNX1, ETV6, ANKRD26, SAMD9, SAMD9L, and ADH5/ALDH2 syndromes. Although the majority of these iPSC lines are derived from patient cells, some are generated by introducing patient-specific mutations into healthy iPSC backgrounds, offering complementary approaches to disease modeling. The review highlights the ability of iPSCs to recapitulate key disease phenotypes, such as impaired hematopoietic differentiation, telomere dysfunction, and defects in DNA repair or ribosome biogenesis. We discuss how these models have enhanced our understanding of disease pathomechanisms, hematopoietic defects, and potential therapeutic approaches. Challenges in generating and maintaining disease-specific iPSCs are examined, particularly for disorders involving DNA repair. We emphasize the necessity of creating isogenic controls to elucidate genotype-phenotype relationships. Furthermore, we address limitations of current iPSC models, including genetic variability among iPSC clones derived from the same patient, and difficulties in achieving robust engraftment of iPSC-derived hematopoietic progenitor cells in mouse transplantation models. The review also explores future directions, including the potential of iPSC models for drug discovery and personalized medicine approaches. This review underscores the significance of iPSC technology in advancing our understanding of inherited hematopoietic disorders and its potential to inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Sushree S Sahoo
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Majd Khiami
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
3
|
Brun C, Allain C, Ferron PJ, Younoussa H, Colicchio B, Jeandidier E, M’Kacher R, Guguen-Guillouzo C, Bertile F. Extended lifespan and improved genome stability in HepaRG-derived cell lines through reprogramming by high-density stress. Proc Natl Acad Sci U S A 2023; 120:e2219298120. [PMID: 37639591 PMCID: PMC10483629 DOI: 10.1073/pnas.2219298120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
The characteristics and fate of cancer cells partly depend on their environmental stiffness, i.e., the local mechanical cues they face. HepaRG progenitors are liver carcinoma cells exhibiting transdifferentiation properties; however, the underlying mechanisms remain unknown. To evaluate the impact of external physical forces mimicking the tumor microenvironment, we seeded them at very high density for 20 h, keeping the cells round and unanchored to the substrate. Applied without corticoids, spatial confinement due to very high density induced reprogramming of HepaRG cells into stable replicative stem-like cells after replating at normal density. Redifferentiation of these stem-like cells into cells very similar to the original HepaRG cells was then achieved using the same stress but in the presence of corticoids. This demonstrates that the cells retained the memory required to run the complete hepatic differentiation program, after bypassing the Hayflick limit twice. We show that physical stress improved chromosome quality and genomic stability, through greater efficiency of DNA repair and restoration of telomerase activity, thus enabling cells to escape progression to a more aggressive cancer state. We also show the primary importance of high-density seeding, possibly triggering compressive stress, in these processes, rather than that of cell roundness or intracellular tensional signals. The HepaRG-derived lines established here considerably extend the lifespan and availability of this surrogate cell system for mature human hepatocytes. External physical stress is a promising way to create a variety of cell lines, and it paves the way for the development of strategies to improve cancer prognosis.
Collapse
Affiliation(s)
- Charlotte Brun
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien UMR 7178, StrasbourgF-67000, France
- Proteomics French Infrastructure, FR2048, ProFI, StrasbourgF-67000, France
| | - Coralie Allain
- Université de Rennes 1, INSERM U1241, Nutrition, Métabolismes et Cancer, RennesF-35033, France
| | - Pierre-Jean Ferron
- Université de Rennes 1, INSERM U1241, Nutrition, Métabolismes et Cancer, RennesF-35033, France
| | | | - Bruno Colicchio
- Université de Haute-Alsace, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, MulhouseF-68093, France
| | - Eric Jeandidier
- Groupe Hospitalier de la Région de Mulhouse et Sud Alsace Mulhouse, Service de génétique, MulhouseF-68070, France
| | - Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, EvryF-91058, France
| | | | - Fabrice Bertile
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien UMR 7178, StrasbourgF-67000, France
- Proteomics French Infrastructure, FR2048, ProFI, StrasbourgF-67000, France
| |
Collapse
|
4
|
M’Kacher R, Colicchio B, Junker S, El Maalouf E, Heidingsfelder L, Plesch A, Dieterlen A, Jeandidier E, Carde P, Voisin P. High Resolution and Automatable Cytogenetic Biodosimetry Using In Situ Telomere and Centromere Hybridization for the Accurate Detection of DNA Damage: An Overview. Int J Mol Sci 2023; 24:ijms24065699. [PMID: 36982772 PMCID: PMC10054499 DOI: 10.3390/ijms24065699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In the event of a radiological or nuclear accident, or when physical dosimetry is not available, the scoring of radiation-induced chromosomal aberrations in lymphocytes constitutes an essential tool for the estimation of the absorbed dose of the exposed individual and for effective triage. Cytogenetic biodosimetry employs different cytogenetic assays including the scoring of dicentrics, micronuclei, and translocations as well as analyses of induced premature chromosome condensation to define the frequency of chromosome aberrations. However, inherent challenges using these techniques include the considerable time span from sampling to result, the sensitivity and specificity of the various techniques, and the requirement of highly skilled personnel. Thus, techniques that obviate these challenges are needed. The introduction of telomere and centromere (TC) staining have successfully met these challenges and, in addition, greatly improved the efficiency of cytogenetic biodosimetry through the development of automated approaches, thus reducing the need for specialized personnel. Here, we review the role of the various cytogenetic dosimeters and their recent improvements in the management of populations exposed to genotoxic agents such as ionizing radiation. Finally, we discuss the emerging potentials to exploit these techniques in a wider spectrum of medical and biological applications, e.g., in cancer biology to identify prognostic biomarkers for the optimal triage and treatment of patients.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
- Correspondence: ; Tel.: +33-160878918
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Elie El Maalouf
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| | | | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, D-68804 Altlussheim, Germany
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 69093 Mulhouse, France
| | - Patrice Carde
- Department of Hematology, Institut Gustave Roussy, 94804 Villejuif, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| |
Collapse
|
5
|
M’Kacher R, Miguet M, Maillard PY, Colicchio B, Scheidecker S, Najar W, Arnoux M, Oudrhiri N, Borie C, Biehler M, Plesch A, Heidingsfelder L, Bennaceur-Griscelli A, Dieterlen A, Voisin P, Junker S, Carde P, Jeandidier E. A Central Role of Telomere Dysfunction in the Formation of a Unique Translocation within the Sub-Telomere Region Resulting in Duplication and Partial Trisomy. Genes (Basel) 2022; 13:genes13101762. [PMID: 36292646 PMCID: PMC9601474 DOI: 10.3390/genes13101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Telomeres play a major role in maintaining genome stability and integrity. Putative involvement of telomere dysfunction in the formation of various types of chromosomal aberrations is an area of active research. Here, we report a case of a six-month-old boy with a chromosomal gain encompassing the 11q22.3q25 region identified by SNP array analysis. The size of the duplication is 26.7 Mb and contains 170 genes (OMIM). The duplication results in partial trisomy of the region in question with clinical consequences, including bilateral renal dysplasia, delayed development, and a heart defect. Moreover, the karyotype determined by R-banding and chromosome painting as well as by hybridization with specific sub-telomere probes revealed the presence of an unbalanced t(9;11)(p24;q22.3) translocation with a unique breakpoint involving the sub-telomere region of the short arm of chromosome 9. The karyotypes of the parents were normal. Telomere integrity in circulating lymphocytes from the child and from his parents was assessed using an automated high-throughput method based on fluorescence in situ hybridization (FISH) with telomere- and centromere-specific PNA probes followed by M-FISH multicolor karyotyping. Very short telomeres, as well as an increased frequency of telomere loss and formation of telomere doublets, were detected in the child’s cells. Interestingly, similar telomere profiles were found in the circulating lymphocytes of the father. Moreover, an assessment of clonal telomere aberrations identified chromosomes 9 and 11 with particularly high frequencies of such aberrations. These findings strongly suggest that telomere dysfunction plays a central role in the formation of this specific unbalanced chromosome rearrangement via chromosome end-to-end fusion and breakage–fusion–bridge cycles.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
- Correspondence: (R.M.); (E.J.); Tel.: +33-1-60878918 (R.M.); +33-3-89648703 (E.J.)
| | - Marguerite Miguet
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 68070 Mulhouse, France
| | - Pierre-Yves Maillard
- Service de Génétique Hôpitaux Universitaires de Strasbourg, Hôpital de Haute Pierre, 1, Rue Molière, 67000 Strasbourg, France
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68070 Mulhouse, France
| | - Sophie Scheidecker
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1, Place de l’Hôpital, 67000 Strasbourg, France
| | - Wala Najar
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
| | - Micheline Arnoux
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Noufissa Oudrhiri
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Claire Borie
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Margaux Biehler
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1, Place de l’Hôpital, 67000 Strasbourg, France
| | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, 68804 Altlussheim, Germany
| | | | - Annelise Bennaceur-Griscelli
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68070 Mulhouse, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, 8000 Aarhus, Denmark
| | - Patrice Carde
- Department of Hematology Gustave Roussy Cancer Campus, Paris Saclay, 94805 Villejuif, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 68070 Mulhouse, France
- Correspondence: (R.M.); (E.J.); Tel.: +33-1-60878918 (R.M.); +33-3-89648703 (E.J.)
| |
Collapse
|