1
|
Sun F, Shuai Y, Wang J, Yan J, Lin B, Li X, Zhao Z. Hippocampal gray matter volume alterations in patients with first-episode and recurrent major depressive disorder and their associations with gene profiles. BMC Psychiatry 2025; 25:134. [PMID: 39955494 PMCID: PMC11829352 DOI: 10.1186/s12888-025-06562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Recent studies indicate that patients with first-episode drug-naïve (FEDN) and recurrent major depressive disorder (R-MDD) exhibit distinct atrophy patterns in the hippocampal subregions along the proximal-distal axis. However, it remains unclear whether such differences occur along the long axis and how they may relate to specific genes. METHODS In the present study, we analyzed T1-weighted images from 421 patients (FEDN: n = 232; R-MDD: n = 189) and 544 normal controls (NC) as part of the REST-meta-MDD consortium. Additionally, transcriptome maps and structural Magnetic Resonance Imaging (MRI) data of six donated brains were obtained from the Allen Human Brain Atlas (AHBA). We first identified changes in gray matter volume (GMV) within the hippocampus of both FEDN and R-MDD patients and then integrated these findings with AHBA transcriptome data to investigate the genes associated with hippocampal GMV changes. RESULTS Compared to NC, FEDN patients displayed reduced GMV in the left hippocampal tail, whereas R-MDD patients exhibited decreased GMV in the bilateral hippocampal body and increased GMV in the bilateral hippocampal tail. Further analysis revealed that expression levels of SYTL2 positively correlated with GMV changes in the hippocampus of FEDN patients, while SORCS3 and SLIT2 positively correlated with those in R-MDD. CONCLUSIONS Our results suggest that GMV alterations in hippocampal subfields along the long axis differ between FEDN and R-MDD, reflecting progressive hippocampal deterioration with prolonged depression, potentially supported by the expression of specific genes. These findings offer valuable insights into the distinct neural and genetic mechanisms underlying FEDN and R-MDD, which may aid in the development of more targeted and effective treatment strategies for MDD subtypes.
Collapse
Affiliation(s)
- Fenfen Sun
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Yifan Shuai
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Jingru Wang
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Jin Yan
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Bin Lin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyun Li
- School of Rehabilitation, Hangzhou Medical College, Hangzhou, China
| | - Zhiyong Zhao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Binjiang Campus, 3333 Binsheng Rd, Hangzhou, China.
| |
Collapse
|
2
|
Zhang S, Liao A, Wang Y, Liu Q, Ouyang L, Peng H, Yuan L, Zhao L, Yang X, Chen X, He Y, Li Z. Profiling expressing features of surface proteins on single-exosome in first-episode Schizophrenia patients: a preliminary study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:84. [PMID: 39349515 PMCID: PMC11443124 DOI: 10.1038/s41537-024-00510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
Proximity barcoding assay, a high-throughput method for single-exosome analysis, was employed to profile surface proteins on individual exosomes of SCZ patients. This analysis identified five differentially expressed proteins (DEPs) between SCZ patients and healthy controls (HC) and six DEPs between antipsychotic responders and non-responders. Furthermore, two exosome clusters were found to be associated with SCZ, and certain DEPs were correlated with cognitive functions.
Collapse
Affiliation(s)
- Sijie Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Aijun Liao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yujue Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qian Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiqing Peng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Linlin Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinbo Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- China National Technology Institute on Mental Disorders & Hunan Key, Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- China National Technology Institute on Mental Disorders & Hunan Key, Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- China National Technology Institute on Mental Disorders & Hunan Key, Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Poo C, Agarwal G, Bonacchi N, Mainen Z. Spatial maps in piriform cortex during olfactory navigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614771. [PMID: 39386694 PMCID: PMC11463389 DOI: 10.1101/2024.09.25.614771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Odors are a fundamental part of the sensory environment used by animals to inform behaviors such as foraging and navigation1,2. Primary olfactory (piriform) cortex is thought to be dedicated to encoding odor identity3-8. Here, using neural ensemble recordings in freely moving rats performing a novel odor-cued spatial choice task, we show that posterior piriform cortex neurons also carry a robust spatial map of the environment. Piriform spatial maps were stable across behavioral contexts independent of olfactory drive or reward availability, and the accuracy of spatial information carried by individual neurons depended on the strength of their functional coupling to the hippocampal theta rhythm. Ensembles of piriform neurons concurrently represented odor identity as well as spatial locations of animals, forming an "olfactory-place map". Our results reveal a previously unknown function for piriform cortex in spatial cognition and suggest that it is well-suited to form odor-place associations and guide olfactory cued spatial navigation.
Collapse
Affiliation(s)
- Cindy Poo
- Champalimaud Foundation, Lisbon, Portugal
| | - Gautam Agarwal
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA, USA
| | | | | |
Collapse
|
4
|
Wang T, Song Z, Zhao X, Wu Y, Wu L, Haghparast A, Wu H. Spatial transcriptomic analysis of the mouse brain following chronic social defeat stress. EXPLORATION (BEIJING, CHINA) 2023; 3:20220133. [PMID: 38264685 PMCID: PMC10742195 DOI: 10.1002/exp.20220133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/03/2023] [Indexed: 01/25/2024]
Abstract
Depression is a highly prevalent and disabling mental disorder, involving numerous genetic changes that are associated with abnormal functions in multiple regions of the brain. However, there is little transcriptomic-wide characterization of chronic social defeat stress (CSDS) to comprehensively compare the transcriptional changes in multiple brain regions. Spatial transcriptomics (ST) was used to reveal the spatial difference of gene expression in the control, resilient (RES) and susceptible (SUS) mouse brains, and annotated eight anatomical brain regions and six cell types. The gene expression profiles uncovered that CSDS leads to gene synchrony changes in different brain regions. Then it was identified that inhibitory neurons and synaptic functions in multiple regions were primarily affected by CSDS. The brain regions Hippocampus (HIP), Isocortex, and Amygdala (AMY) present more pronounced transcriptional changes in genes associated with depressive psychiatric disorders than other regions. Signalling communication between these three brain regions may play a critical role in susceptibility to CSDS. Taken together, this study provides important new insights into CSDS susceptibility at the ST level, which offers a new approach for understanding and treating depression.
Collapse
Affiliation(s)
- Ting Wang
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Zhihong Song
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Xin Zhao
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Yan Wu
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Liying Wu
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Abbas Haghparast
- Neuroscience Research Center, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Haitao Wu
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
- Key Laboratory of Neuroregeneration, Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
5
|
Zhong Q, Jiang L, An K, Zhang L, Li S, An Z. Depression and risk of sarcopenia: a national cohort and Mendelian randomization study. Front Psychiatry 2023; 14:1263553. [PMID: 37920543 PMCID: PMC10618558 DOI: 10.3389/fpsyt.2023.1263553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
Background Depression and the increased risk of sarcopenia are prevalent among the elderly population. However, the causal associations between these factors remain unclear. To investigate the potential association between depression and the risk of sarcopenia in older adults, this study was performed. Methods In the baseline survey, a total of 14,258 individuals aged 40 and above from the China Health and Retirement Longitudinal Study (2015) participated. We initially described the baseline prevalence of the disease. Then, logistic regression and restricted cubic spline (RCS) regression were conducted to assess the relationship between depression and sarcopenia. Subgroup analysis was performed to validate the robustness of the findings. Additionally, we conducted Mendelian randomization analysis using the inverse variance weighting estimator to assess the causal relationship between depression and sarcopenia. Furthermore, we adopted six methods, including MR-Egger, simple median, weighted median, maximum likelihood, robust adjusted profile score (RAPS), and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO), for sensitivity analyses. Results Depression patients exhibited higher risks of sarcopenia in all five models adjusting for different covariates (P < 0.05). The RCS analysis demonstrated a linear relationship between depression and sarcopenia (P < 0.05). In the subgroup analysis, increased risk was observed among participants aged 60-70, married or cohabiting individuals, non-smokers, non-drinkers, those with less than 8 h of sleep, BMI below 24, and individuals with hypertension (all P < 0.05). Mendelian randomization results revealed that genetically proxied depression led to a reduction in appendicular skeletal muscle mass (all P < 0.05). Conclusion Our study provides observational and causal evidences that depression can lead to sarcopenia. This finding emphasizes the importance of timely identification and management of depression, as well as implementing targeted educational programs as part of comprehensive strategies to prevent sarcopenia.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lisha Jiang
- Day Surgery Center of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kang An
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, Multimorbidity Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhang
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, Multimorbidity Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuangqing Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, Multimorbidity Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|