1
|
Freudiger A, Jovanovic VM, Huang Y, Snyder-Mackler N, Conrad DF, Miller B, Montague MJ, Westphal H, Stadler PF, Bley S, Horvath JE, Brent LJN, Platt ML, Ruiz-Lambides A, Tung J, Nowick K, Ringbauer H, Widdig A. Estimating realized relatedness in free-ranging macaques by inferring identity-by-descent segments. Proc Natl Acad Sci U S A 2025; 122:e2401106122. [PMID: 39808663 PMCID: PMC11760927 DOI: 10.1073/pnas.2401106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of identical-by-descent DNA segments (IBD) yield the most precise relatedness estimates. Here, we leverage different methods for estimating IBD segments from low-depth whole genome resequencing data to demonstrate the feasibility and value of resolving fine-scaled gradients of relatedness in free-living animals. Using primarily 4 to 6× depth data from a rhesus macaque (Macaca mulatta) population with long-term pedigree data, we show that we can infer the number and length of IBD segments across the genome with high accuracy even at 0.5× sequencing depth. In line with expectations based on simulation, the resulting estimates demonstrate substantial variation in genetic relatedness within kin classes, leading to overlapping distributions between kin classes. By comparing the IBD-based estimates with pedigree and short tandem repeat-based methods, we show that IBD estimates are more reliable and provide more detailed information on kinship. The inferred IBD segments also identify cryptic genetic relatives not represented in the pedigree and reveal elevated recombination rates in females relative to males, which enables the majority of close maternal and paternal kin to be distinguished with genotype data alone. Our findings represent a breakthrough in the ability to study the predictors and consequences of genetic relatedness in natural populations, contributing to our understanding of a fundamental component of population structure in the wild.
Collapse
Affiliation(s)
- Annika Freudiger
- Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig04103, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Vladimir M. Jovanovic
- Department of Biology, Chemistry and Pharmacy, Human Biology and Primate Evolution, Freie Universität Berlin, Berlin14195, Germany
- Department of Mathematics and Computer Science, Bioinformatics Solution Center, Freie Universität Berlin, Berlin14195, Germany
| | - Yilei Huang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig04107, Germany
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ85281
| | - Donald F. Conrad
- Division of Genetics, Oregon National Primate Research Center, Portland, OR97006
| | - Brian Miller
- Division of Genetics, Oregon National Primate Research Center, Portland, OR97006
| | - Michael J. Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Hendrikje Westphal
- Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig04103, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig04107, Germany
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig04107, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig04103, Germany
- Institute for Theoretical Chemistry, University of Vienna, Vienna1090, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá111311, Colombia
- Santa Fe Institute, Santa Fe, NM87501
| | - Stefanie Bley
- Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig04103, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Julie E. Horvath
- Research and Collections Section, North Carolina Museum of Natural Sciences, Raleigh, NC27601
- Department of Biological Sciences, North Carolina State University, Raleigh, NC27607
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC27517
| | - Lauren J. N. Brent
- Centre for Research in Animal Behavior, University of Exeter, ExeterEX4 4QD, United Kingdom
| | - Michael L. Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Marketing Department, Wharton School of Business, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA19104
| | - Angelina Ruiz-Lambides
- Cayo Santiago Field Station, Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago00741, Puerto Rico
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
- Department of Evolutionary Anthropology, Duke University, Durham, NC27710
- Department of Biology, Duke University, Durham, NC27710
- Duke University Population Research Institute, Durham, NC27710
| | - Katja Nowick
- Department of Biology, Chemistry and Pharmacy, Human Biology and Primate Evolution, Freie Universität Berlin, Berlin14195, Germany
- Department of Mathematics and Computer Science, Bioinformatics Solution Center, Freie Universität Berlin, Berlin14195, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Anja Widdig
- Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig04103, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
- German Centre for Integrative Biodiversity Research, Leipzig04103, Germany
| |
Collapse
|
2
|
Orkin JD, Kuderna LFK, Hermosilla-Albala N, Fontsere C, Aylward ML, Janiak MC, Andriaholinirina N, Balaresque P, Blair ME, Fausser JL, Gut IG, Gut M, Hahn MW, Harris RA, Horvath JE, Keyser C, Kitchener AC, Le MD, Lizano E, Merker S, Nadler T, Perry GH, Rabarivola CJ, Rasmussen L, Raveendran M, Roos C, Wu DD, Zaramody A, Zhang G, Zinner D, Pozzi L, Rogers J, Farh KKH, Marques Bonet T. Ecological and anthropogenic effects on the genomic diversity of lemurs in Madagascar. Nat Ecol Evol 2025; 9:42-56. [PMID: 39730835 DOI: 10.1038/s41559-024-02596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/01/2024] [Indexed: 12/29/2024]
Abstract
Ecological variation and anthropogenic landscape modification have had key roles in the diversification and extinction of mammals in Madagascar. Lemurs represent a radiation with more than 100 species, constituting roughly one-fifth of the primate order. Almost all species of lemurs are threatened with extinction, but little is known about their genetic diversity and demographic history. Here, we analyse high-coverage genome-wide resequencing data from 162 unique individuals comprising 50 species of Lemuriformes, including multiple individuals from most species. Genomic diversity varies widely across the infraorder and yet is broadly consistent among individuals within species. We show widespread introgression in multiple genera and generally high levels of genomic diversity likely resulting from allele sharing that occurred during periods of connectivity and fragmentation during climatic shifts. We find distinct patterns of demographic history in lemurs across the ecogeographic regions of Madagascar within the last million years. Within the past 2,000 years, lemurs underwent major declines in effective population size that corresponded to the timing of human population expansion in Madagascar. In multiple regions of the island, we identified chronological trajectories of inbreeding that are consistent across genera and species, suggesting localized effects of human activity. Our results show how the extraordinary diversity of these long-neglected, endangered primates has been influenced by ecological and anthropogenic factors.
Collapse
Affiliation(s)
- Joseph D Orkin
- Département d'anthropologie, Université de Montréal, Montréal, Québec, Canada.
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, Canada.
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Lukas F K Kuderna
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Núria Hermosilla-Albala
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudia Fontsere
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Megan L Aylward
- Department of Field and Conservation Science, Bristol Zoological Society, Bristol, UK
| | - Mareike C Janiak
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Patricia Balaresque
- Centre de Recherche sur la Biodiversité et l'Environnement, CNRS UMR5300, Université Toulouse III, Université de Toulouse, CNRS IRD, Toulouse, France
| | - Mary E Blair
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, NY, USA
| | - Jean-Luc Fausser
- Institut de Médecine Légale, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Ivo Glynne Gut
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain
| | - Matthew W Hahn
- Department of Biology and Department of Computer Science, Indiana University, Bloomington, IN, USA
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Julie E Horvath
- Research & Collections, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Christine Keyser
- Institut de Médecine Légale, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK
- UK and School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Minh D Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
| | - Esther Lizano
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Unidad de Paleobiología, ICP-CERCA, Unidad Asociada al CSIC por el IBE UPF-CSIC, Cerdanyola del Vallès, Spain
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Tilo Nadler
- Cuc Phuong Commune, Ninh Binh Province, Vietnam
| | - George H Perry
- Departments of Anthropology and Biology, Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Clément J Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
- Université de l'Itasy, Antananarivo, Madagascar
| | | | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Dong Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Primate Cognition, Georg-August-University, Göttingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen, Germany
| | - Luca Pozzi
- Department of Anthropology, University of Texas San Antonio, San Antonio, TX, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Tomas Marques Bonet
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain.
- CNAG-Centre for Genomic Analyses, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
5
|
van der Valk T, Jensen A, Caillaud D, Guschanski K. Comparative genomic analyses provide new insights into evolutionary history and conservation genomics of gorillas. BMC Ecol Evol 2024; 24:14. [PMID: 38273244 PMCID: PMC10811819 DOI: 10.1186/s12862-023-02195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Genome sequencing is a powerful tool to understand species evolutionary history, uncover genes under selection, which could be informative of local adaptation, and infer measures of genetic diversity, inbreeding and mutational load that could be used to inform conservation efforts. Gorillas, critically endangered primates, have received considerable attention and with the recently sequenced Bwindi mountain gorilla population, genomic data is now available from all gorilla subspecies and both mountain gorilla populations. Here, we reanalysed this rich dataset with a focus on evolutionary history, local adaptation and genomic parameters relevant for conservation. We estimate a recent split between western and eastern gorillas of 150,000-180,000 years ago, with gene flow around 20,000 years ago, primarily between the Cross River and Grauer's gorilla subspecies. This gene flow event likely obscures evolutionary relationships within eastern gorillas: after excluding putatively introgressed genomic regions, we uncover a sister relationship between Virunga mountain gorillas and Grauer's gorillas to the exclusion of Bwindi mountain gorillas. This makes mountain gorillas paraphyletic. Eastern gorillas are less genetically diverse and more inbred than western gorillas, yet we detected lower genetic load in the eastern species. Analyses of indels fit remarkably well with differences in genetic diversity across gorilla taxa as recovered with nucleotide diversity measures. We also identified genes under selection and unique gene variants specific for each gorilla subspecies, encoding, among others, traits involved in immunity, diet, muscular development, hair morphology and behavior. The presence of this functional variation suggests that the subspecies may be locally adapted. In conclusion, using extensive genomic resources we provide a comprehensive overview of gorilla genomic diversity, including a so-far understudied Bwindi mountain gorilla population, identify putative genes involved in local adaptation, and detect population-specific gene flow across gorilla species.
Collapse
Affiliation(s)
- Tom van der Valk
- Centre for Palaeogenetics, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- SciLifeLab, Stockholm, Sweden.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Damien Caillaud
- Department of Anthropology, University of CA - Davis, Davis, California, USA
| | - Katerina Guschanski
- SciLifeLab, Stockholm, Sweden
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|