1
|
Shamabadi A, Karimi H, Fallahzadeh MA, Vaseghi S, Arabzadeh Bahri R, Fallahpour B, Abdolghaffari AH, Akhondzadeh S. Sex-controlled differences in sertraline and citalopram efficacies in major depressive disorder: a randomized, double-blind trial. Int Clin Psychopharmacol 2025; 40:156-166. [PMID: 38640201 DOI: 10.1097/yic.0000000000000550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
To investigate the response to antidepressants while controlling for sex, which has been controversial, 92 outpatient males and females with major depressive disorder were assigned to sertraline (100 mg/day) or citalopram (40 mg/day) in two strata and were assessed using Hamilton depression rating scale (HDRS) scores and brain-derived neurotrophic factor (BDNF), interleukin (IL)-6 and cortisol serum levels in this 8-week, randomized, parallel-group, double-blind clinical trial. Data of 40 sertraline and 40 citalopram recipients with equal representation of males and females assigned to each medication were analyzed, while their baseline characteristics were not statistically different ( P > 0.05). There were no significant differences between sertraline and citalopram recipients in outcome changes ( P > 0.05), all of which indicated improvement, but a significant time-treatment-sex interaction effect in BDNF levels was observed ( P = 0.035). Regarding this, subgroup analyses illustrated a significantly greater increase in male BDNF levels following sertraline treatment ( P = 0.020) with a moderate to large effect size (Cohen's d = 0.76 and ). Significant associations were observed between percentage changes in IL-6 levels and BDNF levels in sertraline recipients ( P = 0.033) and HDRS scores in citalopram recipients ( P < 0.001). Sex was an effect modifier in BDNF alterations following sertraline and citalopram administration. Further large-scale, high-quality, long-term studies are recommended.
Collapse
Affiliation(s)
- Ahmad Shamabadi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran
| | - Hanie Karimi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran
| | - Mohammad Ali Fallahzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj
| | - Razman Arabzadeh Bahri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran
| | - Bita Fallahpour
- Department of Psychiatry, Razi Hospital, University of Social Welfare and Rehabilitation Sciences
| | | | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran
| |
Collapse
|
2
|
Jelovac M, Pavlovic D, Stankovic B, Kotur N, Ristivojevic B, Pavlovic S, Zukic B. Comprehensive pharmacogenomics profiling of the Serbian population. Front Pharmacol 2025; 16:1553536. [PMID: 40166472 PMCID: PMC11955590 DOI: 10.3389/fphar.2025.1553536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025] Open
Abstract
Background Pharmacogenomics offers a possibility of anticipating drug response based on individuals' genetic profiles and represents a step toward implementation of personalized treatment through routine genetic testing. Development of highthroughput sequencing technologies aided identification and interpretation of variants in many pharmacogenes simultaneously. Nonetheless, the integration of pharmacogenomics into clinical practice is arduous, partly due to insufficient knowledge of ethnic pharmacogenetic data. The aim of our study was to assemble the most comprehensive pharmacogenomics landscape of the Serbian population so far. Methods We used genomic data of 881 individuals from Serbia obtained by clinical and whole exome sequencing. Raw sequencing files were processed using an in-house pipeline for alignment and variant calling. For annotation of pharmacogenetics star alleles and determination of phenotypes, we used the PharmCAT and Stargazer tools. Star allele and phenotype frequencies were calculated and compared to worldwide and European populations. Population differentiation was presented through calculation of Wright's fixation index. Results Our results showed that population differentiation was the highest between the Serbian and the worldwide population. In the Serbian population, the most relevant pharmacogenes in terms of star allele frequencies and actionable phenotypes were CYP2B6, NAT2, SLCO1B1, UGT1A1 and VKORC1, that had significantly different distribution compared to other European populations. Conclusion In conclusion, significant differences in frequencies of pharmacogenetic phenotypes that influence response to several drug categories including statins and antidepressants indicate that inclusion of data relevant for drug response to genetic reports would be beneficial in the Serbian population. Implementation of pharmacogenetic testing could be achieved through analysis of clinical and whole exome sequencing data.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Branka Zukic
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Văruț RM, Popescu AIS, Gaman S, Niculescu CE, Niculescu AȘ, Dop D, Stepan MD, Ionovici N, Singer CE, Popescu C. Cyclodextrin-Based Drug Delivery Systems for Depression: Improving Antidepressant Bioavailability and Targeted Central Nervous System Delivery. Pharmaceutics 2025; 17:355. [PMID: 40143019 PMCID: PMC11945394 DOI: 10.3390/pharmaceutics17030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Cyclodextrin (CD)-based drug delivery systems have emerged as a promising strategy to overcome limitations commonly encountered in antidepressant therapy, including low bioavailability, poor solubility, and suboptimal penetration of the blood-brain barrier. This review synthesizes current evidence demonstrating that complexing various classes of antidepressants-such as tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and atypical antidepressants-with β-CD or its derivatives significantly enhances drug solubility and stability. In addition, encapsulation with CDs can diminish systemic toxicity and improve pharmacokinetics, thereby helping to optimize dosage regimens and reduce adverse effects. Analysis of published in vitro and in vivo studies indicates that CD formulations not only boost therapeutic efficacy but also enable sustained or targeted release, which is critical for drugs requiring precise plasma and tissue concentrations. When compared to other carriers (e.g., liposomes, polymeric nanoparticles, dendrimers), CD-based systems often stand out for their ease of formulation, biocompatibility, and cost-effectiveness, although limited drug-loading capacity can be a drawback. We recommend expanding in vivo trials to substantiate the clinical benefits of CD-antidepressant complexes, particularly for treatment-resistant cases or specific subpopulations (e.g., elderly and pediatric patients). Additional investigations should also explore hybrid systems-combining CDs with advanced nano- or macroparticles-to amplify their advantages and address any limitations. Ultimately, integrating CDs into antidepressant regimens holds substantial potential to refine therapy outcomes, reduce adverse events, and pave the way for more personalized, effective interventions for depression.
Collapse
Affiliation(s)
- Renata Maria Văruț
- Research Methodology Department, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Alin Iulian Silviu Popescu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Simina Gaman
- Department I, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Elena Niculescu
- Department of Mother and Baby, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.E.N.); (D.D.); (M.D.S.); (N.I.); (C.E.S.)
| | - Adrian Ștefan Niculescu
- Department of Orthopedics, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Dalia Dop
- Department of Mother and Baby, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.E.N.); (D.D.); (M.D.S.); (N.I.); (C.E.S.)
| | - Mioara Desdemona Stepan
- Department of Mother and Baby, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.E.N.); (D.D.); (M.D.S.); (N.I.); (C.E.S.)
| | - Nina Ionovici
- Department of Mother and Baby, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.E.N.); (D.D.); (M.D.S.); (N.I.); (C.E.S.)
| | - Cristina Elena Singer
- Department of Mother and Baby, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.E.N.); (D.D.); (M.D.S.); (N.I.); (C.E.S.)
| | - Cristina Popescu
- Department of Anatomy, University of Medicine and Pharmacy, Discipline of Anatomy, 200349 Craiova, Romania;
| |
Collapse
|
4
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Svob Strac D. Genetic Basis of Stress-Related Neuropsychiatric Disorders. Genes (Basel) 2024; 15:1274. [PMID: 39457398 PMCID: PMC11507372 DOI: 10.3390/genes15101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Stress exposure is one of the major risk factors for the development of different psychiatric and neurodegenerative diseases, leading to various (mal)adaptive alternations in different parts of the brain, and affecting both brain structure and function [...].
Collapse
Affiliation(s)
- Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Dobrea CM, Frum A, Butuca A, Morgovan C, Stoicescu L, Chis AA, Arseniu AM, Rus LL, Gligor FG, Vonica-Tincu AL. Drug-Drug Interactions of Selective Serotonin Reuptake Inhibitors: A Pharmacovigilance Study on Real-World Evidence from the EudraVigilance Database. Pharmaceuticals (Basel) 2024; 17:1278. [PMID: 39458919 PMCID: PMC11510210 DOI: 10.3390/ph17101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
As the most common psychiatric symptom, depression represents a subject of high interest for the medical community. Background/Objectives: International guidelines consider selective serotonin reuptake inhibitors (SSRIs) the first-line treatment of depression. Although having better efficacy and tolerability in comparison to tricyclic antidepressants or monoamine oxidase inhibitors, the diversity and potential severity of adverse effects and interactions manifested by SSRIs, combined with the frequency of prescriptions, lead to the necessity of evaluating real-world data. The aim of this study was to identify and evaluate the drug interactions reported in EudraVigilance (EV) for the six SSRIs representatives that are authorized in Europe: fluoxetine (FXT), fluvoxamine (FVM), citalopram (CIT), escitalopram (ESC), paroxetine (PAR) and sertraline (SER). The entire class of SSRIs was examined as a comparator to identify whether one of the representatives was more prone to reporting. Methods: Descriptive analysis and disproportionality analysis were conducted on data extracted from the EV database. Results: A total of 326,450 adverse reactions (ADRs) were reported for the SSRIs group. Approximately a quarter of these (n = 83,201; 25.46%) were reported for SER and 22.37% (n = 73,131) for PAR. Of the total ADRs reported, 2.12% (n = 6925) represent preferred terms related to drug-drug interactions (DDIs): SER (n = 1474; 22.37%), CIT (n = 1272, 19.86), and FXT (n = 1309, 19.83%). Specific ADRs related to inhibitory activity represent 0.98%, and for potentiating activity, 1.89%. Conclusions: Although representing a small value of the total ADRs, DDIs may be related to severe outcomes. Awareness should be raised for this category of ADRs that can be reduced by the joined efforts of physicians and pharmacists.
Collapse
Affiliation(s)
- Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (C.M.); (A.A.C.); (A.M.A.); (L.L.R.); (F.G.G.); (A.L.V.-T.)
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (C.M.); (A.A.C.); (A.M.A.); (L.L.R.); (F.G.G.); (A.L.V.-T.)
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (C.M.); (A.A.C.); (A.M.A.); (L.L.R.); (F.G.G.); (A.L.V.-T.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (C.M.); (A.A.C.); (A.M.A.); (L.L.R.); (F.G.G.); (A.L.V.-T.)
| | - Laurentiu Stoicescu
- Internal Medicine Department, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania;
- Cardiology Department, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Adriana Aurelia Chis
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (C.M.); (A.A.C.); (A.M.A.); (L.L.R.); (F.G.G.); (A.L.V.-T.)
| | - Anca Maria Arseniu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (C.M.); (A.A.C.); (A.M.A.); (L.L.R.); (F.G.G.); (A.L.V.-T.)
| | - Luca Liviu Rus
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (C.M.); (A.A.C.); (A.M.A.); (L.L.R.); (F.G.G.); (A.L.V.-T.)
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (C.M.); (A.A.C.); (A.M.A.); (L.L.R.); (F.G.G.); (A.L.V.-T.)
| | - Andreea Loredana Vonica-Tincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (C.M.); (A.A.C.); (A.M.A.); (L.L.R.); (F.G.G.); (A.L.V.-T.)
| |
Collapse
|
7
|
Al-Beltagi M, Saeed NK, Bediwy AS, Bediwy EA, Elbeltagi R. Decoding the genetic landscape of autism: A comprehensive review. World J Clin Pediatr 2024; 13:98468. [PMID: 39350903 PMCID: PMC11438927 DOI: 10.5409/wjcp.v13.i3.98468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings. Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD, influencing both diagnosis and therapeutic strategies. AIM To explore the genetic architecture of ASD, elucidate mechanistic insights into genetic mutations, and examine gene-environment interactions. METHODS A comprehensive systematic review was conducted, integrating findings from studies on genetic variations, epigenetic mechanisms (such as DNA methylation and histone modifications), and emerging technologies [including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and single-cell RNA sequencing]. Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar. RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD, yet many cases remain unexplained by known factors, suggesting undiscovered genetic components. Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving. Epigenetic modifications, particularly DNA methylation and non-coding RNAs, also play significant roles in ASD pathogenesis. Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data. CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments. Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice. Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies, ultimately enhancing outcomes for individuals affected by ASD.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Eman A Bediwy
- Internal Medicine, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| |
Collapse
|
8
|
Aljabali AAA, Alkaraki AK, Gammoh O, Tambuwala MM, Mishra V, Mishra Y, Hassan SS, El-Tanani M. Deciphering Depression: Epigenetic Mechanisms and Treatment Strategies. BIOLOGY 2024; 13:638. [PMID: 39194576 PMCID: PMC11351889 DOI: 10.3390/biology13080638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Depression, a significant mental health disorder, is under intense research scrutiny to uncover its molecular foundations. Epigenetics, which focuses on controlling gene expression without altering DNA sequences, offers promising avenues for innovative treatment. This review explores the pivotal role of epigenetics in depression, emphasizing two key aspects: (I) identifying epigenetic targets for new antidepressants and (II) using personalized medicine based on distinct epigenetic profiles, highlighting potential epigenetic focal points such as DNA methylation, histone structure alterations, and non-coding RNA molecules such as miRNAs. Variations in DNA methylation in individuals with depression provide opportunities to target genes that are associated with neuroplasticity and synaptic activity. Aberrant histone acetylation may indicate that antidepressant strategies involve enzyme modifications. Modulating miRNA levels can reshape depression-linked gene expression. The second section discusses personalized medicine based on epigenetic profiles. Analyzing these patterns could identify biomarkers associated with treatment response and susceptibility to depression, facilitating tailored treatments and proactive mental health care. Addressing ethical concerns regarding epigenetic information, such as privacy and stigmatization, is crucial in understanding the biological basis of depression. Therefore, researchers must consider these issues when examining the role of epigenetics in mental health disorders. The importance of epigenetics in depression is a critical aspect of modern medical research. These findings hold great potential for novel antidepressant medications and personalized treatments, which would significantly improve patient outcomes, and transform psychiatry. As research progresses, it is expected to uncover more complex aspects of epigenetic processes associated with depression, enhance our comprehension, and increase the effectiveness of therapies.
Collapse
Affiliation(s)
- Alaa A. A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Almuthanna K. Alkaraki
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan;
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan;
| | - Murtaza M. Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates; (M.M.T.); (M.E.-T.)
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Sk. Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India;
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates; (M.M.T.); (M.E.-T.)
| |
Collapse
|
9
|
Camilleri M, Jencks K. Pharmacogenetics in IBS: update and impact of GWAS studies in drug targets and metabolism. Expert Opin Drug Metab Toxicol 2024; 20:319-332. [PMID: 38785066 PMCID: PMC11139426 DOI: 10.1080/17425255.2024.2349716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Medications are frequently prescribed for patients with irritable bowel syndrome (IBS) or disorders of gut brain interaction. The level of drug metabolism and modifications in drug targets determine medication efficacy to modify motor or sensory function as well as patient response outcomes. AREAS COVERED The literature search included PubMed searches with the terms: pharmacokinetics, pharmacogenomics, epigenetics, clinical trials, irritable bowel syndrome, disorders of gut brain interaction, and genome-wide association studies. The main topics covered in relation to irritable bowel syndrome were precision medicine, pharmacogenomics related to drug metabolism, pharmacogenomics related to mechanistic targets, and epigenetics. EXPERT OPINION Pharmacogenomics impacting drug metabolism [CYP 2D6 (cytochrome P450 2D6) or 2C19 (cytochrome P450 2C19)] is the most practical approach to precision medicine in the treatment of IBS. Although there are proof of concept studies that have documented the importance of genetic modification of transmitters or receptors in altering responses to medications in IBS, these principles have rarely been applied in patient response outcomes. Genome-wide association (GWAS) studies have now documented the association of symptoms with genetic variation but not the evaluation of treatment responses. Considerably more research, particularly focused on patient response outcomes and epigenetics, is essential to impact this field in clinical medicine.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Kara Jencks
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Truedson P, Ott M, Wahlström L, Lundqvist R, Maripuu M, Lindmark K, Lieber I, Werneke U. Serious adverse drug events associated with psychotropic treatment of bipolar or schizoaffective disorder: a 17-year follow-up on the LiSIE retrospective cohort study. Front Psychiatry 2024; 15:1358461. [PMID: 38633030 PMCID: PMC11022285 DOI: 10.3389/fpsyt.2024.1358461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/07/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Mood stabilisers and other psychotropic drugs can lead to serious adverse drug events (ADEs). However, the incidence remains unknown. We aimed to (a) determine the incidence of serious ADEs in patients with bipolar or schizoaffective disorders, (b) explore the role of lithium exposure, and (c) describe the aetiology. Methods This study is part of the LiSIE (Lithium-Study into Effects and Side Effects) retrospective cohort study. Between 2001 and 2017, patients in the Swedish region of Norrbotten, with a diagnosis of bipolar or schizoaffective disorder, were screened for serious ADEs to psychotropic drugs, having resulted in critical, post-anaesthesia, or intensive care. We determined the incidence rate of serious ADEs/1,000 person-years (PY). Results In 1,521 patients, we identified 41 serious ADEs, yielding an incidence rate of 1.9 events per 1,000 PY. The incidence rate ratio (IRR) between ADEs with lithium present and causally implicated and ADEs without lithium exposure was significant at 2.59 (95% CI 1.20-5.51; p = 0.0094). The IRR of ADEs in patients <65 and ≥65 years was significant at 3.36 (95% CI 1.63-6.63; p = 0.0007). The most common ADEs were chronic lithium intoxication, oversedation, and cardiac/blood pressure-related events. Discussion Serious ADEs related to treatment of bipolar (BD) or schizoaffective disorder (SZD) were uncommon but not rare. Older individuals were particularly at risk. The risk was higher in individuals exposed to lithium. Serum lithium concentration should always be checked when patients present with new or unclear somatic symptoms. However, severe ADEs also occurred with other mood stabilisers and other psychotropic drugs.
Collapse
Affiliation(s)
- Petra Truedson
- Department of Clinical Sciences, Psychiatry, Sunderby Research Unit, Umeå University, Umeå, Sweden
| | - Michael Ott
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Lisa Wahlström
- Department of Psychiatry, Sunderby Hospital, Luleå, Sweden
| | - Robert Lundqvist
- Department of Public Health and Clinical Medicine, Sunderby Research Unit, Umeå University, Luleå, Sweden
| | - Martin Maripuu
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
| | - Krister Lindmark
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Lieber
- Department of Clinical Sciences, Psychiatry, Sunderby Research Unit, Umeå University, Umeå, Sweden
| | - Ursula Werneke
- Department of Clinical Sciences, Psychiatry, Sunderby Research Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Ingelman-Sundberg M, Molden E. Therapeutic drug monitoring, liquid biopsies or pharmacogenomics for prediction of human drug metabolism and response. Br J Clin Pharmacol 2024. [PMID: 38523083 DOI: 10.1111/bcp.16048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 03/26/2024] Open
Abstract
Pharmacokinetics plays a central role in understanding the significant interindividual differences that exist in drug metabolism and response. Effectively addressing these differences requires a multi-faceted approach that encompasses a variety of tools and methods. In this review, we examine three key strategies to achieve this goal, namely pharmacogenomics, therapeutic drug monitoring (TDM) and liquid biopsy-based monitoring of hepatic ADME gene expression and highlight their advantages and limitations. We note that larger cohort studies are needed to validate the utility of liquid biopsy-based assessment of hepatic ADME gene expression, which includes prediction of drug metabolism in the clinical setting. Modern mass spectrometers have improved traditional TDM methods, offering versatility and sensitivity. In addition, the identification of endogenous or dietary markers for CYP metabolic traits offers simpler and more cost-effective alternatives to determine the phenotype. We believe that future pharmacogenomic applications in clinical practice should prioritize the identification of missing heritable factors, using larger, well-characterized patient studies and controlling for confounding factors such as diet, concomitant medication and physical health. The intricate regulation of ADME gene expression implies that large-scale studies combining long-read next-generation sequencing (NGS) of complete genomes with phenotyping of patients taking different medications are essential to identify these missing heritabilities. The continuous integration of such data into AI-driven analytical systems could provide a comprehensive and useful framework. This could lead to the development of highly effective algorithms to improve genetics-based precision treatment by predicting drug metabolism and response, significantly improving clinical outcomes.
Collapse
Affiliation(s)
- Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Löscher W. Of Mice and Men: The Inter-individual Variability of the Brain's Response to Drugs. eNeuro 2024; 11:ENEURO.0518-23.2024. [PMID: 38355298 PMCID: PMC10867552 DOI: 10.1523/eneuro.0518-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Biological variation is ubiquitous in nature. Despite highly standardized breeding and husbandry under controlled environmental conditions, phenotypic diversity exists in laboratory mice and rats just as it does in humans. The resulting inter-individual variability affects various characteristics of animal disease models, including the responsiveness to drugs. Thus, the common practice of averaging data within an experimental group can lead to misinterpretations in neuroscience and other research fields. In this commentary, the impact of inter-individual variation in drug responsiveness is illustrated by examples from the testing of antiseizure medications in rodent temporal lobe epilepsy models. Individual mice and rats rendered epileptic by treatment according to standardized protocols fall into groups that either do or do not respond to antiseizure medications, thus mimicking the clinical situation in patients with epilepsy. Population responses are not normally distributed, and divergent responding is concealed in averages subjected to parametric statistical tests. Genetic, epigenetic, and environmental factors are believed to contribute to inter-individual variation in drug response but the specific molecular and physiological causes are not well understood. Being aware of inter-individual variability in rodents allows an improved interpretation of both behavioral phenotypes and drug effects in a pharmacological experiment.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
13
|
Radosavljevic M, Vučević D, Samardžić J, Radenkovic M, Radosavljević T. Therapeutical Approach to Arterial Hypertension - Current State of the Art. Curr Med Chem 2024; 31:4602-4620. [PMID: 38303535 DOI: 10.2174/0109298673274823231220063652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 02/03/2024]
Abstract
Arterial hypertension (AH) is recognized as the most common illness within the group of cardiovascular diseases and the most massive chronic non-infectious disease in the world. The number of hypertensive patients worldwide has reached 1.28 billion, contributing to an increase in cardiovascular diseases and premature death globally. The high prevalence of hypertension emphasizes the importance of effectively treating this condition. Elevated blood pressure often leads to lethal complications (heart failure, stroke, renal disorders, etc.) if left untreated. Considering an increase in AH prevalence in the future, a successful therapeutical approach to this disease and its complications is essential. The goal of AH treatment is to maintain normotensive blood pressure through various approaches, including lifestyle changes, a well-balanced diet, increased physical activity, psychoeducation, and, when necessary, pharmacotherapy. The evolving pharmacotherapeutic landscape reflects the progress made in our understanding of hypertension and emphasizes the need for continuous innovation to meet the challenges posed by this prevalent global health concern. The journey toward more effective and tailored treatments for hypertension is ongoing, and the introduction of new medications plays a pivotal role in shaping the future of antihypertensive pharmacotherapy.
Collapse
Affiliation(s)
- Milica Radosavljevic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Danijela Vučević
- Faculty of Medicine, Institute of Pathophysiology "Ljubodrag Buba Mihailović", University of Belgrade, Belgrade, 11000, Serbia
| | - Janko Samardžić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Miroslav Radenkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Tatjana Radosavljević
- Faculty of Medicine, Institute of Pathophysiology "Ljubodrag Buba Mihailović", University of Belgrade, Belgrade, 11000, Serbia
| |
Collapse
|
14
|
Perna G, Spiti A, Torti T, Daccò S, Caldirola D. Biomarker-Guided Tailored Therapy in Major Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:379-400. [PMID: 39261439 DOI: 10.1007/978-981-97-4402-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This chapter provides a comprehensive examination of a broad range of biomarkers used for the diagnosis and prediction of treatment outcomes in major depressive disorder (MDD). Genetic, epigenetic, serum, cerebrospinal fluid (CSF), and neuroimaging biomarkers are analyzed in depth, as well as the integration of new technologies such as digital phenotyping and machine learning. The intricate interplay between biological and psychological elements is emphasized as essential for tailoring MDD management strategies. In addition, the evolving link between psychotherapy and biomarkers is explored to uncover potential associations that shed light on treatment response. This analysis underscores the importance of individualized approaches in the treatment of MDD that integrate advanced biological insights into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Giampaolo Perna
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, Como, Italy.
- Humanitas SanpioX, Milan, Italy.
| | - Alessandro Spiti
- IRCCS Humanitas Research Hospital, Milan, Italy
- Psicocare, Humanitas Medical Care, Monza, Italy
| | - Tatiana Torti
- ASIPSE School of Cognitive-Behavioral-Therapy, Milan, Italy
| | - Silvia Daccò
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Humanitas SanpioX, Milan, Italy
- Psicocare, Humanitas Medical Care, Monza, Italy
| | - Daniela Caldirola
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, Como, Italy
- Humanitas SanpioX, Milan, Italy
| |
Collapse
|
15
|
Roberts B, Cooper Z, Lu S, Stanley S, Majda BT, Collins KRL, Gilkes L, Rodger J, Akkari PA, Hood SD. Utility of pharmacogenetic testing to optimise antidepressant pharmacotherapy in youth: a narrative literature review. Front Pharmacol 2023; 14:1267294. [PMID: 37795032 PMCID: PMC10545970 DOI: 10.3389/fphar.2023.1267294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Pharmacogenetics (PGx) is the study and application of how interindividual differences in our genomes can influence drug responses. By evaluating individuals' genetic variability in genes related to drug metabolism, PGx testing has the capabilities to individualise primary care and build a safer drug prescription model than the current "one-size-fits-all" approach. In particular, the use of PGx testing in psychiatry has shown promising evidence in improving drug efficacy as well as reducing toxicity and adverse drug reactions. Despite randomised controlled trials demonstrating an evidence base for its use, there are still numerous barriers impeding its implementation. This review paper will discuss the management of mental health conditions with PGx-guided treatment with a strong focus on youth mental illness. PGx testing in clinical practice, the concerns for its implementation in youth psychiatry, and some of the barriers inhibiting its integration in clinical healthcare will also be discussed. Overall, this paper provides a comprehensive review of the current state of knowledge and application for PGx in psychiatry and summarises the capabilities of genetic information to personalising medicine for the treatment of mental ill-health in youth.
Collapse
Affiliation(s)
- Bradley Roberts
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Zahra Cooper
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Stephanie Lu
- School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Susanne Stanley
- Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | | | - Khan R. L. Collins
- Western Australian Department of Health, North Metropolitan Health Service, Perth, WA, Australia
| | - Lucy Gilkes
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
- Divison of General Practice, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Jennifer Rodger
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - P. Anthony Akkari
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- Division of Neurology, Duke University Medical Centre, Duke University, Durham, United States
| | - Sean D. Hood
- Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
16
|
Teng F, Lu Z, Gao F, Liang J, Li J, Tian X, Wang X, Guan H, Wang J. Systems biology approaches to identify potential targets and inhibitors of the intestinal microbiota to treat depression. Sci Rep 2023; 13:11225. [PMID: 37433869 DOI: 10.1038/s41598-023-38444-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023] Open
Abstract
Depression is a common mental disease, with some patients exhibiting ideas and behaviors such as self-harm and suicide. The drugs currently used to treat depression have not achieved good results. It has been reported that metabolites produced by intestinal microbiota affect the development of depression. In this study, core targets and core compounds were screened by specific algorithms in the database, and three-dimensional structures of these compounds and proteins were simulated by molecular docking and molecular dynamics software to further study the influence of intestinal microbiota metabolites on the pathogenesis of depression. By analyzing the RMSD gyration radius and RMSF, it was finally determined that NR1H4 had the best binding effect with genistein. Finally, according to Lipinski's five rules, equol, genistein, quercetin and glycocholic acid were identified as effective drugs for the treatment of depression. In conclusion, the intestinal microbiota can affect the development of depression through the metabolites equol, genistein and quercetin, which act on the critical targets of DPP4, CYP3A4, EP300, MGAM and NR1H4.
Collapse
Affiliation(s)
- Fei Teng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhongwen Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Fei Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jing Liang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jiawen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xuanhe Tian
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xianshuai Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Haowei Guan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|