1
|
Friedman C, Niemiec S, Dabelea D, Kechris K, Yang IV, Adgate JL, Glueck DH, Martenies SE, Magzamen S, Starling AP. Prenatal black carbon exposure and DNA methylation in umbilical cord blood. Int J Hyg Environ Health 2025; 263:114464. [PMID: 39332350 DOI: 10.1016/j.ijheh.2024.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND/OBJECTIVES Prenatal exposure to ambient air pollution is associated with adverse cardiometabolic outcomes in childhood. We previously observed that prenatal black carbon (BC) was inversely associated with adiponectin, a hormone secreted by adipocytes, in early childhood. Changes to DNA methylation have been proposed as a potential mediator linking in utero exposures to lasting health impacts. METHODS Among 532 mother-child pairs enrolled in the Colorado-based Healthy Start study, we performed an epigenome-wide association study of the relationship between prenatal exposure to a component of air pollution, BC, and DNA methylation in cord blood. Average pregnancy ambient BC was estimated at the mother's residence using a spatiotemporal prediction model. DNA methylation was measured using the Illumina 450K array. We used multiple linear regression to estimate associations between prenatal ambient BC and 429,246 cysteine-phosphate-guanine sites (CpGs), adjusting for potential confounders. We identified differentially methylated regions (DMRs) using DMRff and ENmix-combp. In a subset of participants (n = 243), we investigated DNA methylation as a potential mediator of the association between prenatal ambient BC and lower adiponectin in childhood. RESULTS We identified 44 CpGs associated with average prenatal ambient BC after correcting for multiple testing. Several genes annotated to the top CpGs had reported functions in the immune system. There were 24 DMRs identified by both DMRff and ENmix-combp. One CpG (cg01123250), located on chromosome 2 and annotated to the UNC80 gene, was found to mediate approximately 20% of the effect of prenatal BC on childhood adiponectin, though the confidence interval was wide (95% CI: 3, 84). CONCLUSIONS Prenatal BC was associated with DNA methylation in cord blood at several sites and regions in the genome. DNA methylation may partially mediate associations between prenatal BC and childhood cardiometabolic outcomes.
Collapse
Affiliation(s)
- Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sierra Niemiec
- Center for Innovative Design & Analysis, Department of Biostatistics & Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Pulmonary Sciences, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sheena E Martenies
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Iacopetta D, Catalano A, Ceramella J, Pellegrino M, Marra M, Scali E, Sinicropi MS, Aquaro S. The Ongoing Impact of COVID-19 on Pediatric Obesity. Pediatr Rep 2024; 16:135-150. [PMID: 38391001 PMCID: PMC10885050 DOI: 10.3390/pediatric16010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
In the developed world, pediatric obesity (PO) has been a major health concern since the last century, and this condition may lead to detrimental life-long physical and mental comorbidities. Currently, its prevalence has increased in low- and middle-income countries and in many high-income countries. Thus, the provision of effective and tailored care for children and their families has become vital. The social consequences of the COVID-19 pandemic are known everywhere, and among these, it has been argued that the COVID-19 pandemic has had a major impact on PO. Overall, the growth of PO over the last decade has been enhanced by the pandemic. During the COVID-19 pandemic, children, adolescents and young adults gained weight as the pediatric population dealt with sedentary lifestyles and changes in food habits. In this review, we want to highlight the impact that the COVID-19 pandemic had on PO.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Elisabetta Scali
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
3
|
Patel P, Selvaraju V, Babu JR, Geetha T. Association of the DNA Methylation of Obesity-Related Genes with the Dietary Nutrient Intake in Children. Nutrients 2023; 15:2840. [PMID: 37447167 DOI: 10.3390/nu15132840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The occurrence of obesity stems from both genetic and external influences. Despite thorough research and attempts to address it through various means such as dietary changes, physical activity, education, and medications, a lasting solution to this widespread problem remains elusive. Nutrients play a crucial role in various cellular processes, including the regulation of gene expression. One of the mechanisms by which nutrients can affect gene expression is through DNA methylation. This modification can alter the accessibility of DNA to transcription factors and other regulatory proteins, thereby influencing gene expression. Nutrients such as folate and vitamin B12 are involved in the one-carbon metabolism pathway, which provides the methyl groups necessary for DNA methylation. Studies have shown that the inadequate intake of these nutrients can lead to alterations in DNA methylation patterns. For this study, we aim to understand the differences in the association of the dietary intake between normal weight and overweight/obese children and between European American and African American children with the DNA methylation of the three genes NRF1, FTO, and LEPR. The research discovered a significant association between the nutritional intake of 6-10-years-old children, particularly the methyl donors present in their diet, and the methylation of the NRF1, FTO, and LEPR genes. Additionally, the study emphasizes the significance of considering health inequalities, particularly family income and maternal education, when investigating the epigenetic impact of methyl donors in diet and gene methylation.
Collapse
Affiliation(s)
- Priyadarshni Patel
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|