1
|
Gargiulo S, Albanese S, Megna R, Gramanzini M, Marsella G, Vecchiarelli L. Veterinary medical care in rodent models of stroke: Pitfalls and refinements to balance quality of science and animal welfare. Neuroscience 2025; 572:269-302. [PMID: 39894435 DOI: 10.1016/j.neuroscience.2025.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Rodent models of cerebral ischemia provide a valuable contribution to a better understanding of stroke pathophysiology, to validate diagnostic methods, and to enable testing of new treatments for ischemia-reperfusion damage and comorbidities. However, ethical concerns have led to increased attention to the welfare aspects of such models. Supportive therapies are an essential part of the overall animal care and use program and should be tailored to the experimental model being studied, the regulatory requirements, and research objectives to achieve high-quality preclinical studies and ethical research practices. On the other hand, the use of veterinary medical treatments in preclinical models of stroke must balance the needs of animal care and potential sources of bias in experimental results. This report provides a systematic review of the scientific literature covering the relevant period from years 1988 to September 2024, with the aim to investigating veterinary medical interventions useful to minimize suffering in rodent models of stroke without producing experimental bias. The research findings, consolidated from 181 selected studies, published from 1991 to 2023, indicate the feasibility of implementing personalized protocols of anesthesia, analgesics, antibiotics, and other supportive therapies in rodent models of stroke, while avoiding scientific interferences. These data fill a gap in current knowledge and could be of interest for an interdisciplinary audience working with rodent models of stroke, stimulating further refinements to safeguard both animal welfare and the validity of experimental findings, and may promote the culture of ethical conduct in various research fields and disciplines.
Collapse
Affiliation(s)
- Sara Gargiulo
- Institute of Clinical Physiology, National Research Council, Via Fiorentina 1, 53100 Siena, Italy.
| | - Sandra Albanese
- Institute of Biostructures and Bioimaging, National Research Council, 80131 Naples, Italy.
| | - Rosario Megna
- Institute of Biostructures and Bioimaging, National Research Council, 80131 Naples, Italy.
| | - Matteo Gramanzini
- Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council, L.go F. Vito, 00168 Rome, Italy.
| | - Gerardo Marsella
- Animal Care Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Lidovina Vecchiarelli
- Animal Welfare at Animal and Plant Health Agency, Department for Environment Food and Rural Affairs, Midlands, UK.
| |
Collapse
|
2
|
Liu Y, Zhang Y, Yu J, Fu H. Identification of gene expression change associated with isoflurane anesthesia and neurocognitive disorders using bioinformatics methods. J Pharmacol Toxicol Methods 2025; 132:107582. [PMID: 39889321 DOI: 10.1016/j.vascn.2025.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/04/2025] [Accepted: 01/21/2025] [Indexed: 02/02/2025]
Abstract
BACKGROUND Isoflurane, a commonly used anesthetic, has been linked to neurocognitive dysfunction (NCD). However, the precise relationship between isoflurane anesthesia and NCD remains unclear. METHODS Datasets related to isoflurane anesthesia were obtained from a public database. The hub genes of isoflurane anesthesia were selected using logistic regression with the least absolute shrinkage and selection operator (LASSO). Human neuroblastoma cell line SH-SY5Y was induced to differentiate into terminal neuron-like cells. RESULTS The signaling pathways involved in isoflurane anesthesia and NCD were subjected to analysis, resulting in the identification of 35 signaling pathways, including the PI3K/AKT pathway, the AGE-RAGE signaling pathway and the apelin signaling pathway, which were found to be associated with both NCD and isoflurane anesthesia. A total of nine cross-expressed genes (Nfe2l2, Fgf2, Edn1, Spp1, Hmox1, Picalm, Gnb5, Eif2s1 and Gls) were identified between isoflurane anesthesia and NCD. The LASSO logistic regression model was employed to identify three hub genes (Fgf2, Gnb5, Spp1). The expression of these three hub genes was validated using other expression datasets. In human neuron-like cells, isoflurane also significantly affected the expression of three corresponding human homologous genes. The expression trends of these three genes in human cells were consistent with the expression in rat brains after isoflurane treatment, providing further evidence for the rationality of the three hub genes. CONCLUSIONS The present study revealed key candidate genes and related functional signaling pathways through bioinformatics analysis and cell experiments, which may serve as the basis for isoflurane-related NCD.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, CN 550004, China
| | - Ying Zhang
- College of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou, CN 5500004, China
| | - Jialu Yu
- College of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou, CN 5500004, China
| | - Hua Fu
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, CN 550004, China.
| |
Collapse
|
3
|
Stavchansky VV, Yuzhakov VV, Sevan'kaeva LE, Fomina NK, Koretskaya AE, Denisova AE, Mozgovoy IV, Gubsky LV, Filippenkov IB, Myasoedov NF, Limborska SA, Dergunova LV. Melanocortin Derivatives Induced Vascularization and Neuroglial Proliferation in the Rat Brain under Conditions of Cerebral Ischemia. Curr Issues Mol Biol 2024; 46:2071-2092. [PMID: 38534749 DOI: 10.3390/cimb46030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Stroke remains the second leading cause of death worldwide. The development of new therapeutic agents focused on restoring vascular function and neuroprotection of viable tissues is required. In this study the neuroprotective activity of melanocortin-like ACTH(4-7)PGP and ACTH(6-9)PGP peptides was investigated in rat brain at 24 h after transient middle cerebral artery occlusion (tMCAO). The severity of ischemic damage, changes in the proliferative activity of neuroglial cells and vascularization of rat brain tissue were analyzed. The administration of peptides resulted in a significant increase in the volume density of neurons in the perifocal zone of infarction compared to rats subjected to ischemia and receiving saline. Immunohistochemical analysis of the proliferative activity of neuroglia cells using PCNA antibodies showed a significant increase in the number of proliferating cells in the penumbra and in the intact cerebral cortex of rats receiving peptide treatment. The effect of peptides on vascularization was examined using CD31 antibodies under tMCAO conditions, revealing a significant increase in the volume density of vessels and their sizes in the penumbra after administration of ACTH(4-7)PGP and ACTH(6-9)PGP. These findings confirm the neuroprotective effect of peptides due to the activation of neuroglia proliferation and the enhancement of collateral blood flow.
Collapse
Affiliation(s)
- Vasily V Stavchansky
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Vadim V Yuzhakov
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Larisa E Sevan'kaeva
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Natalia K Fomina
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Anastasia E Koretskaya
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Alina E Denisova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Ivan V Mozgovoy
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Leonid V Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Ivan B Filippenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Nikolay F Myasoedov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Svetlana A Limborska
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Lyudmila V Dergunova
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|
4
|
Ni X, Yu X, Ye Q, Su X, Shen S. Desflurane improves electrical activity of neurons and alleviates oxygen-glucose deprivation-induced neuronal injury by activating the Kcna1-dependent Kv1.1 channel. Exp Brain Res 2024; 242:477-490. [PMID: 38184806 DOI: 10.1007/s00221-023-06764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
Several volatile anesthetics have presented neuroprotective functions in ischemic injury. This study investigates the effect of desflurane (Des) on neurons following oxygen-glucose deprivation (OGD) challenge and explores the underpinning mechanism. Mouse neurons HT22 were subjected to OGD, which significantly reduced cell viability, increased lactate dehydrogenase release, and promoted cell apoptosis. In addition, the OGD condition increased oxidative stress in HT22 cells, as manifested by increased ROS and MDA contents, decreased SOD activity and GSH/GSSG ratio, and reduced nuclear protein level of Nrf2. Notably, the oxidative stress and neuronal apoptosis were substantially blocked by Des treatment. Bioinformatics suggested potassium voltage-gated channel subfamily A member 1 (Kcna1) as a target of Des. Indeed, the Kcna1 expression in HT22 cells was decreased by OGD but restored by Des treatment. Artificial knockdown of Kcna1 negated the neuroprotective effects of Des. By upregulating Kcna1, Des activated the Kv1.1 channel, therefore enhancing K+ currents and inducing neuronal repolarization. Pharmacological inhibition of the Kv1.1 channel reversed the protective effects of Des against OGD-induced injury. Collectively, this study demonstrates that Des improves electrical activity of neurons and alleviates OGD-induced neuronal injury by activating the Kcna1-dependent Kv1.1 channel.
Collapse
Affiliation(s)
- Xiaolei Ni
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China
| | - Xiaoyan Yu
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China
| | - Qingqing Ye
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China
| | - Xiaohu Su
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China
| | - Shuai Shen
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Dell’Orco M, Weisend JE, Perrone-Bizzozero NI, Carlson AP, Morton RA, Linsenbardt DN, Shuttleworth CW. Repetitive spreading depolarization induces gene expression changes related to synaptic plasticity and neuroprotective pathways. Front Cell Neurosci 2023; 17:1292661. [PMID: 38162001 PMCID: PMC10757627 DOI: 10.3389/fncel.2023.1292661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Spreading depolarization (SD) is a slowly propagating wave of profound depolarization that sweeps through cortical tissue. While much emphasis has been placed on the damaging consequences of SD, there is uncertainty surrounding the potential activation of beneficial pathways such as cell survival and plasticity. The present study used unbiased assessments of gene expression to evaluate that compensatory and repair mechanisms could be recruited following SD, regardless of the induction method, which prior to this work had not been assessed. We also tested assumptions of appropriate controls and the spatial extent of expression changes that are important for in vivo SD models. SD clusters were induced with either KCl focal application or optogenetic stimulation in healthy mice. Cortical RNA was extracted and sequenced to identify differentially expressed genes (DEGs). SDs using both induction methods significantly upregulated 16 genes (vs. sham animals) that included the cell proliferation-related genes FOS, JUN, and DUSP6, the plasticity-related genes ARC and HOMER1, and the inflammation-related genes PTGS2, EGR2, and NR4A1. The contralateral hemisphere is commonly used as control tissue for DEG studies, but its activity could be modified by near-global disruption of activity in the adjacent brain. We found 21 upregulated genes when comparing SD-involved cortex vs. tissue from the contralateral hemisphere of the same animals. Interestingly, there was almost complete overlap (21/16) with the DEGs identified using sham controls. Neuronal activity also differs in SD initiation zones, where sustained global depolarization is required to initiate propagating events. We found that gene expression varied as a function of the distance from the SD initiation site, with greater expression differences observed in regions further away. Functional and pathway enrichment analyses identified axonogenesis, branching, neuritogenesis, and dendritic growth as significantly enriched in overlapping DEGs. Increased expression of SD-induced genes was also associated with predicted inhibition of pathways associated with cell death, and apoptosis. These results identify novel biological pathways that could be involved in plasticity and/or circuit modification in brain tissue impacted by SD. These results also identify novel functional targets that could be tested to determine potential roles in the recovery and survival of peri-infarct tissues.
Collapse
Affiliation(s)
- Michela Dell’Orco
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jordan E. Weisend
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Andrew P. Carlson
- Department of Neurosurgery, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Russell A. Morton
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - David N. Linsenbardt
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - C. William Shuttleworth
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|