1
|
He X, Ren E, Dong L, Yuan P, Zhu J, Liu D, Wang J. Contribution of PKS+ Escherichia coli to colon carcinogenesis through the inhibition of exosomal miR-885-5p. Heliyon 2024; 10:e37346. [PMID: 39315148 PMCID: PMC11417213 DOI: 10.1016/j.heliyon.2024.e37346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives About 90 % of all colorectal cancer (CRC) fatalities are caused by the metastatic spread of primary tumors, which is closely correlated with patient survival and spreads by circulating tumor cells (CTCs). The epithelial-mesenchymal transition (EMT) that characterizes CTCs is associated with a poor prognosis. Organotropic metastasis is dictated by the transmission of miRNAs by cancer-derived exosomes. The purpose of this research is to examine PKS + E's function. Coli in CRC metastases and exosomal miR-885-5p suppression. Methods A cohort of 100 patients (50 CRC, 50 healthy) underwent colonoscopy screenings from February 2018 to August 2021. Exosomes were isolated using ultracentrifugation, and exosomal miRNA was analyzed using sequencing and qPCR. Results Among the patients, 40 tested positive for E. coli (12 CRC, 23 healthy). Serotyping revealed that 68.57 % harbored the PKS gene. Exosomal miR-885-5p levels were significantly altered in CRC patients with PKS + E. coli. Intriguingly, our findings indicate that exosomes derived from EMT-CRC cells did not affect miR-885-5p synthesis in HUVECs. Moreover, we observed that the levels of miR-885-5p in both exosomes and the total CRC-conditioned medium were comparable upon isolation of exosomes from CRC cells. What's more, an increased expression of miR-558-5p within the tumors, and the group that received exosome treatment, as well as the EMT-HCT116 group, exhibited a higher occurrence of distant metastasis. Conclusion PKS + E. By inhibiting exosomal miR-885-5p, coli is linked to CRC metastases, offering a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Xiaoming He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Enbo Ren
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Lujia Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pengfei Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jiaxin Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Dechun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jianguang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
2
|
Jin H, Liu J, Wang D. Antioxidant Potential of Exosomes in Animal Nutrition. Antioxidants (Basel) 2024; 13:964. [PMID: 39199210 PMCID: PMC11351667 DOI: 10.3390/antiox13080964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
This review delves into the advantages of exosomes as novel antioxidants in animal nutrition and their potential for regulating oxidative stress. Although traditional nutritional approaches promote oxidative stress defense systems in mammalian animals, several issues remain to be solved, such as low bioavailability, targeted tissue efficiency, and high-dose by-effect. As an important candidate offering regulation opportunities concerned with cellular communication, disease prevention, and physiology regulation in multiple biological systems, the potential of exosomes in mediating redox status in biological systems has not been well described. A previously reported relationship between redox system regulation and circulating exosomes suggested exosomes as a fundamental candidate for both a regulator and biomarker for a redox system. Herein, we review the effects of oxidative stress on exosomes in animals and the potential application of exosomes as antioxidants in animal nutrition. Then, we highlight the advantages of exosomes as redox regulators due to their higher bioavailability and physiological heterogeneity-targeted properties, providing a theoretical foundation and feed industry application. Therefore, exosomes have shown great potential as novel antioxidants in the field of animal nutrition. They can overcome the limitations of traditional antioxidants in terms of dosage and side effects, which will provide unprecedented opportunities in nutritional management and disease prevention, and may become a major breakthrough in the field of animal nutrition.
Collapse
Affiliation(s)
| | | | - Diming Wang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.J.); (J.L.)
| |
Collapse
|
3
|
Liu L, Gao L, Zhou K, Li Q, Xu H, Feng X, Wang L, Song L. The expression patterns of exosomal miRNAs in the Pacific oyster after high-temperature stress or Vibrio stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105174. [PMID: 38548001 DOI: 10.1016/j.dci.2024.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
The exosomal miRNA plays a crucial role in the intercellular communication response to environmental stress and pathogenic stimulation. In the present study, the expression of exosomal miRNAs in the Pacific oyster Crassostrea gigas after high-temperature stress or Vibrio splendidus stimulation was investigated through high-throughput sequencing. The exosomes were identified to be teardrop-like vesicles with the average size of 81.7 nm by transmission electron microscopy. There were 66 known miRNAs and 33 novel miRNAs identified, of which 10 miRNAs were differentially expressed after both high-temperature stress and Vibrio stimulation compared to the control group. A total of 1868 genes were predicted as the putative targets of miRNAs, of which threonine aspartase 1-like was targeted by the highest number of related miRNAs. The robustness and reliability of miRNA expression from the sRNA sequencing data were verified by employing eight miRNAs for qPCR. GO and KEGG clustering analyses revealed that apoptosis was significantly enriched by the target genes of differentially expressed exosomal miRNAs after high-temperature stress, and autophagy and cytokine activity were significantly enriched after Vibrio stimulation. Energy metabolism was found to be significantly shared in the target gene enrichments after both high-temperature stress and Vibrio stimulation. These findings would improve our understanding of the regulatory mechanisms of exosomal miRNAs in C. gigas after high-temperature stress or Vibrio stimulation.
Collapse
Affiliation(s)
- Lu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Keli Zhou
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qingsong Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Hairu Xu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xingyi Feng
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| |
Collapse
|