1
|
Lohmar JM, Gross SR, Carter-Wientjes CH, Mack BM, Wei Q, Lebar MD, Cary JW. The putative forkhead transcription factor FhpA is necessary for development, aflatoxin production, and stress response in Aspergillus flavus. PLoS One 2025; 20:e0315766. [PMID: 40029854 PMCID: PMC11875336 DOI: 10.1371/journal.pone.0315766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/30/2024] [Indexed: 03/06/2025] Open
Abstract
Forkhead transcription factors regulate several important biological processes in many eukaryotic species including fungi. Bioinformatic analysis of the Aspergillus flavus genome revealed four putative forkhead transcription factor genes. Genetic disruption of (AFLA_005634), a homolog of the Aspergillus nidulans fhpA/fkhA gene (AN4521), revealed that the fhpA gene is a negative regulator of both asexual spore production and aflatoxin B1 production in A. flavus. Furthermore, disruption of the fhpA gene caused a complete loss of sclerotial formation. Overexpression of the fhpA gene caused A. flavus to become more sensitive to sodium chloride whereas disruption of the fhpA gene did not change the ability of A. flavus to respond to any osmotic stress agent tested. Interestingly, both disruption and overexpression of the fhpA gene led to increases in sensitivity to the oxidative stress agent menadione. Overall, these results suggest that fhpA is an important regulator of morphological and chemical development in addition to stress response in A. flavus.
Collapse
Affiliation(s)
- Jessica M. Lohmar
- Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Stephanie R. Gross
- Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Carol H. Carter-Wientjes
- Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Brian M. Mack
- Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Qijian Wei
- Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Matthew D. Lebar
- Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Jeffrey W. Cary
- Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| |
Collapse
|
2
|
Yu W, Pei R, Zhang Y, Tu Y, He B. Light regulation of secondary metabolism in fungi. J Biol Eng 2023; 17:57. [PMID: 37653453 PMCID: PMC10472637 DOI: 10.1186/s13036-023-00374-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Fungi have evolved unique metabolic regulation mechanisms for adapting to the changing environments. One of the key features of fungal adaptation is the production of secondary metabolites (SMs), which are essential for survival and beneficial to the organism. Many of these SMs are produced in response to the environmental cues, such as light. In all fungal species studied, the Velvet complex transcription factor VeA is a central player of the light regulatory network. In addition to growth and development, the intensity and wavelength of light affects the formation of a broad range of secondary metabolites. Recent studies, mainly on species of the genus Aspergillus, revealed that the dimer of VeA-VelB and LaeA does not only regulate gene expression in response to light, but can also be involved in regulating production of SMs. Furthermore, the complexes have a wide regulatory effect on different types of secondary metabolites. In this review, we discussed the role of light in the regulation of fungal secondary metabolism. In addition, we reviewed the photoreceptors, transcription factors, and signaling pathways that are involved in light-dependent regulation of secondary metabolism. The effects of transcription factors on the production of secondary metabolites, as well as the potential applications of light regulation for the production of pharmaceuticals and other products were discussed. Finally, we provided an overview of the current research in this field and suggested potential areas for future research.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yufei Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
3
|
Wang Z, Zhao S, Zhang K, Lin C, Ru X, Yang Q. CgVeA, a light signaling responsive regulator, is involved in regulation of chaetoglobosin A biosynthesis and conidia development in Chaetomium globosum. Synth Syst Biotechnol 2022; 7:1084-1094. [PMID: 35949485 PMCID: PMC9356241 DOI: 10.1016/j.synbio.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
Cytochalasans, with diverse structures and pharmacological activities, are a class of compounds containing isoindolinone moieties fused to the tricyclic or tetracyclic ring system. Chaetoglobosin A (cheA), mainly produced by Chaetomium globosum, is the most abundant cytochalasan. However, limited understanding of transcriptional regulation of morphological development and cheA biosynthesis in C. globosum has hindered cheA application in agriculture and biomedical field. This study examined the regulatory role of CgVeA gene in C. globosum. CgVeA had significant effect on secondary metabolites production in C. globosum, similar to that reported in other filamentous fungi. Inactivation of CgVeA caused an obvious decrease in cheA production from 51.32 to 19.76 mg/L under dark conditions. In contrast, CgVeA overexpression resulted in a dramatic increase in cheA production, reaching 206.59 mg/L under light conditions, which was higher than that noted under dark condition. The RT-qPCR results confirmed that CgVeA, as a light responsive regulator, positively regulated cheA biosynthesis by controlling the expression of core genes of the cheA biosynthetic gene cluster and other relevant regulators. Electrophoretic mobility shift assays proved that CgVeA directly regulated LaeA, cheR, and p450, and indirectly regulated PKS. Moreover, CgVeA had a significant effect on the regulation of asexual spores production. When compared with wild-type C. globosum, CgVeA-silenced and CgVeA overexpression mutants presented remarkable differences in sporulation, irrespective of light or dark condition. Besides, CgVeA expression was speculated to negatively regulate spore formation. These findings illustrated the regulatory mechanism of a hypothetical global regulator, CgVeA, in C. globosum, suggesting its potential application in industrial-scale cheA biosynthesis.
Collapse
|
4
|
Zhao S, Zhang K, Lin C, Cheng M, Song J, Ru X, Wang Z, Wang W, Yang Q. Identification of a Novel Pleiotropic Transcriptional Regulator Involved in Sporulation and Secondary Metabolism Production in Chaetomium globosum. Int J Mol Sci 2022; 23:ijms232314849. [PMID: 36499180 PMCID: PMC9740612 DOI: 10.3390/ijms232314849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Chaetoglobosin A (CheA), a well-known macrocyclic alkaloid with prominently highly antimycotic, antiparasitic, and antitumor properties, is mainly produced by Chaetomium globosum. However, a limited understanding of the transcriptional regulation of CheA biosynthesis has hampered its application and commercialization in agriculture and biomedicine. Here, a comprehensive study of the CgXpp1 gene, which encodes a basic helix-loop-helix family regulator with a putative role in the regulation of fungal growth and CheA biosynthesis, was performed by employing CgXpp1-disruption and CgXpp1-complementation strategies in the biocontrol species C. globosum. The results suggest that the CgXpp1 gene could be an indirect negative regulator in CheA production. Interestingly, knockout of CgXpp1 considerably increased the transcription levels of key genes and related regulatory factors associated with the CheA biosynthetic. Disruption of CgXpp1 led to a significant reduction in spore production and attenuation of cell development, which was consistent with metabolome analysis results. Taken together, an in-depth analysis of pleiotropic regulation influenced by transcription factors could provide insights into the unexplored metabolic mechanisms associated with primary and secondary metabolite production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qian Yang
- Correspondence: ; Tel.: +86-451-8640-2652
| |
Collapse
|
5
|
Lawrinowitz S, Wurlitzer JM, Weiss D, Arndt HD, Kothe E, Gressler M, Hoffmeister D. Blue Light-Dependent Pre-mRNA Splicing Controls Pigment Biosynthesis in the Mushroom Terana caerulea. Microbiol Spectr 2022; 10:e0106522. [PMID: 36094086 PMCID: PMC9603100 DOI: 10.1128/spectrum.01065-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/18/2022] [Indexed: 12/30/2022] Open
Abstract
Light induces the production of ink-blue pentacyclic natural products, the corticin pigments, in the cobalt crust mushroom Terana caerulea. Here, we describe the genetic locus for corticin biosynthesis and provide evidence for a light-dependent dual transcriptional/cotranscriptional regulatory mechanism. Light selectively induces the expression of the corA gene encoding the gateway enzyme, the first described mushroom polyporic acid synthetase CorA, while other biosynthetic genes for modifying enzymes necessary to complete corticin assembly are induced only at lower levels. The strongest corA induction was observed following exposure to blue and UV light. A second layer of regulation is provided by the light-dependent splicing of the three introns in the pre-mRNA of corA. Our results provide insight into the fundamental organization of how mushrooms regulate natural product biosynthesis. IMPORTANCE The regulation of natural product biosyntheses in mushrooms in response to environmental cues is poorly understood. We addressed this knowledge gap and chose the cobalt crust mushroom Terana caerulea as our model. Our work discovered a dual-level regulatory mechanism that connects light as an abiotic stimulus with a physiological response, i.e., the production of dark-blue pigments. Exposure to blue light elicits strongly increased transcription of the gene encoding the gateway enzyme, the polyporic acid synthetase CorA, that catalyzes the formation of the pigment core structure. Additionally, light is a prerequisite for the full splicing of corA pre-mRNA and, thus, its proper maturation. Dual transcriptional/cotranscriptional light-dependent control of fungal natural product biosynthesis has previously been unknown. As it allows the tight control of a key metabolic step, it may be a much more prevalent mechanism among these organisms.
Collapse
Affiliation(s)
- Stefanie Lawrinowitz
- Friedrich-Schiller-Universität Jena, Institute of Pharmacy, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Jacob M. Wurlitzer
- Friedrich-Schiller-Universität Jena, Institute of Pharmacy, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Dieter Weiss
- Friedrich-Schiller-Universität Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Jena, Germany
| | - Hans-Dieter Arndt
- Friedrich-Schiller-Universität Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Jena, Germany
| | - Erika Kothe
- Friedrich-Schiller-Universität Jena, Institute for Microbiology, Jena, Germany
| | - Markus Gressler
- Friedrich-Schiller-Universität Jena, Institute of Pharmacy, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Dirk Hoffmeister
- Friedrich-Schiller-Universität Jena, Institute of Pharmacy, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| |
Collapse
|
6
|
Transcription Factors in the Fungus Aspergillus nidulans: Markers of Genetic Innovation, Network Rewiring and Conflict between Genomics and Transcriptomics. J Fungi (Basel) 2021; 7:jof7080600. [PMID: 34436139 PMCID: PMC8396895 DOI: 10.3390/jof7080600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Gene regulatory networks (GRNs) are shaped by the democratic/hierarchical relationships among transcription factors (TFs) and associated proteins, together with the cis-regulatory sequences (CRSs) bound by these TFs at target promoters. GRNs control all cellular processes, including metabolism, stress response, growth and development. Due to the ability to modify morphogenetic and developmental patterns, there is the consensus view that the reorganization of GRNs is a driving force of species evolution and differentiation. GRNs are rewired through events including the duplication of TF-coding genes, their divergent sequence evolution and the gain/loss/modification of CRSs. Fungi (mainly Saccharomycotina) have served as a reference kingdom for the study of GRN evolution. Here, I studied the genes predicted to encode TFs in the fungus Aspergillus nidulans (Pezizomycotina). The analysis of the expansion of different families of TFs suggests that the duplication of TFs impacts the species level, and that the expansion in Zn2Cys6 TFs is mainly due to dispersed duplication events. Comparison of genomic annotation and transcriptomic data suggest that a significant percentage of genes should be re-annotated, while many others remain silent. Finally, a new regulator of growth and development is identified and characterized. Overall, this study establishes a novel theoretical framework in synthetic biology, as the overexpression of silent TF forms would provide additional tools to assess how GRNs are rewired.
Collapse
|
7
|
Durán-Rivera B, Rojas-Rodas F, Silva-López W, Gómez-Suárez C, Castro-Restrepo D. Molecular identification of Shiitake [Lentinula edodes Berk (Pegler)] and production of secondary metabolites with biotechnological potential. BIONATURA 2020. [DOI: 10.21931/rb/2020.05.03.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Shitake mushroom (Lentinula edodes) is the second most-consumed mushroom in the world; in Colombia, it is cultivated and commercialized on a small scale in some supermarkets. Little is known about the precedence, nutritional and medicinal properties of Shiitake produced in Colombia. In this study, four shiitake isolates were grown in Colombia (LEUCO1, LEUCO2, LEUCO3, and LEUCO4) were sequenced in their ITS genes and evaluated for the production of three medicinal metabolites, eritadenine, ergotioneine and β-glucans (1,3-1, 6), using submerged culture. Genetic analysis revealed that all the isolates were close and related to the Japanese strain Cr62. LEUCO1 and LEUCO2 showed a distance of 0.000, as well as LEUCO3 and LEUCO4. All four isolates produced erythadenin in a range of 26.3-8.6 mg / L, with the best performance of LEUCO1 at 26.3 mg / L (p <0.05). Ergotioneine was produced with similar statistical yields in all the isolates with an average of 0.7 mg / g of dry weight biomass (DW). Β-glucans (1.3-1.6) were produced with yields of 5.6 - 3.8% of DW biomass, with the best values for LEUCO2 and the lowest for LEUCO4 (p <0.05). In conclusion, we identified low genetic diversity in the four isolates, corresponding to two haplotypes with minimal genetic difference between them, related to the Japanese strain Cr62, indicating that Colombian farmers cultivate almost the same strains of shitake. Secondary metabolites, eritadenine, β-glucans and ergotioneine were found in promising yields useful for the pharmaceutical and food industries. More studies should be conducted to improve the yield of shitake metabolites through new growing conditions for industrial production and to find metabolic pathways and related genes.
Collapse
Affiliation(s)
- Byron Durán-Rivera
- Universidad Catolica de Oriente, Unidad de Biotecnología Vegetal, Rionegro, Antioquia, Colombia, postal code 054040
| | - Felipe Rojas-Rodas
- Universidad Catolica de Oriente, Unidad de Biotecnología Vegetal, Rionegro, Antioquia, Colombia, postal code 054040
| | - Wilber Silva-López
- Centro de Ciencia Básica, Grupo de óptica y Espectroscopía, Universidad Pontificia Bolivariana, Circular primera N° 70 – 01- Campus Laureles 050031
| | - Crhistian Gómez-Suárez
- CECIF, Centro de la Ciencia y la Investigación Farmacéutica, Sabaneta, Antioquia, Colombia, postal code 055450
| | - Dagoberto Castro-Restrepo
- Universidad Catolica de Oriente, Unidad de Biotecnología Vegetal, Rionegro, Antioquia, Colombia, postal code 054040
| |
Collapse
|