1
|
Zhou Z, Liu Y, Ishigaki Y, Yamaguchi S, Chen J, Liu X. Microbial protease supplementation improves gastric emptying and protein digestive fate of beef for the elderly under dynamic in vitro digestion. Food Res Int 2025; 202:115721. [PMID: 39967173 DOI: 10.1016/j.foodres.2025.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Elderly individuals experience age-related declines in digestive function, which can hinder the digestion of dietary proteins and thereby negatively impact overall health. This study provides a comprehensive understanding of the protein digestive fate of beef with Protease-DS supplementation by analyzing gastric emptying behavior and amino acid and peptide profiles during a simulated in vitro elderly digestion process. The adult model exhibited superior gastric emptying capacity, with relatively rapid and early expulsion of gastric digesta into the intestinal segment. Additionally, the underperforming elderly model showed notable improvement in the emptying process with Protease-DS supplementation, achieving a rate of 0.0110 min-1, which was close to the adult model of 0.0125 min-1 and significantly faster than the elderly model of 0.0080 min-1. Protein digestibility in the elderly model was significantly enhanced with Protease-DS supplementation, increasing from 55.62 % to 63.60 %, approaching that of the adult model (69.60 %). Protease-DS significantly improved the essential amino acid score (EAAS), particularly for methionine + cysteine, phenylalanine + tyrosine, lysine, and leucine. Furthermore, it enhanced the release of unique polypeptide fragments, distinct from those in both the adult and elderly models, and demonstrated significant anti-amnesic and antithrombotic bioactive functions, highlighting its potential to improve memory and reduce blood clotting. This study provides guidance for elderly consumers on enhancing dietary protein digestion through protease supplementation, presenting it as an effective strategy to address protein deficiency and improve health and well-being.
Collapse
Affiliation(s)
- Zhitong Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi 214122 China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122 China
| | - Yang Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122 China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122 China
| | - Yuki Ishigaki
- Amano Enzyme Inc. Innovation Center, Kakamigahara, Japan
| | | | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122 China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122 China
| | - Xiao Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122 China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122 China.
| |
Collapse
|
2
|
Ding C, Wu J, Guo Q, Luan J, Yang K, Li Z, Li X, Yu J, Liang F, Yang B, Chen T. Characteristics and potential human health risks of Paralytic Shellfish Toxins identified in eight species of bivalves from South Yellow Sea Mudflat. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 278:107174. [PMID: 39603051 DOI: 10.1016/j.aquatox.2024.107174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
The consumption of bivalves contaminated with paralytic shellfish toxins (PSTs) poses a serious risk to human health. However, the presence of PSTs in bivalves from the South Yellow Sea Mudflat remains unclear. This study comprehensively examined the characteristics and potential health risks of PSTs in eight species of bivalves from the South Yellow Sea Mudflat across four seasons. Typical PSTs, including STX, dcNeoSTX, GTX1, GTX2, GTX3, and GTX4, were detected in white clams, clams, short-necked clams, blue mussels, razor clams, mussels, scallops, and oysters. Significant differences of PSTs concentrations among bivalves across different seasons were detected using Kruskal-Wallis tests (p < 0.05), with the highest PSTs concentrations found in mussels (20.46 μg/individual) during autumn. Furthermore, Pearson tests revealed significant positive correlations between PSTs concentrations and shell length, shell height, shell width, and soft tissue wet weight, indicating that larger bivalves contain higher PSTs levels. The highest dietary toxin intake (DTI) of PSTs across the four seasons was found in mussels (2.138 μgSTX eq. kg⁻¹ bw day⁻¹) during autumn. Notably, the exposure risk index (ERI) from bivalve consumption for male consumers was 1.23 ± 0.819, which was higher than that for female consumers (1.102 ± 0.735). The ERI of PSTs for children aged 2-7 and the elderly over 65 were 1.448 ± 0.957 and 1.316 ± 0.874, respectively, which were higher than those for other age groups, indicating that children and the elderly are more sensitive to PSTs. It is important to note that most ERIs of PSTs from total tissues were higher than 1 (potential risk), while ERIs of PSTs from non-digestive tissues were lower than 1, suggesting that potential health risks could be reduced by removing the digestive tissues of bivalves before consumption. This study provides valuable information for mitigating health risks associated with bivalve consumption.
Collapse
Affiliation(s)
- Cheng Ding
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Jinling Wu
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Qingyuan Guo
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China.
| | - Jiaxuan Luan
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Kai Yang
- China MCC5 Group Limited Corporation, Chengdu, 610023, China
| | - Zhaoxia Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Yancheng, Jiangsu Province, 224051, China
| | - Feng Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Yancheng, Jiangsu Province, 224051, China
| | - Bairen Yang
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Tianming Chen
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| |
Collapse
|
3
|
Popescu C, Munteanu C, Anghelescu A, Ciobanu V, Spînu A, Andone I, Mandu M, Bistriceanu R, Băilă M, Postoiu RL, Vlădulescu-Trandafir AI, Giuvara S, Malaelea AD, Onose G. Novelties on Neuroinflammation in Alzheimer's Disease-Focus on Gut and Oral Microbiota Involvement. Int J Mol Sci 2024; 25:11272. [PMID: 39457054 PMCID: PMC11508522 DOI: 10.3390/ijms252011272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Recent studies underscore the role of gut and oral microbiota in influencing neuroinflammation through the microbiota-gut-brain axis, including in Alzheimer's disease (AD). This review aims to provide a comprehensive synthesis of recent findings on the involvement of gut and oral microbiota in the neuroinflammatory processes associated with AD, emphasizing novel insights and therapeutic implications. This review reveals that dysbiosis in AD patients' gut and oral microbiota is linked to heightened peripheral and central inflammatory responses. Specific bacterial taxa, such as Bacteroides and Firmicutes in the gut, as well as Porphyromonas gingivalis in the oral cavity, are notably altered in AD, leading to significant changes in microglial activation and cytokine production. Gut microbiota alterations are associated with increased intestinal permeability, facilitating the translocation of endotoxins like lipopolysaccharides (LPS) into the bloodstream and exacerbating neuroinflammation by activating the brain's toll-like receptor 4 (TLR4) pathways. Furthermore, microbiota-derived metabolites, including short-chain fatty acids (SCFAs) and amyloid peptides, can cross the blood-brain barrier and modulate neuroinflammatory responses. While microbial amyloids may contribute to amyloid-beta aggregation in the brain, certain SCFAs like butyrate exhibit anti-inflammatory properties, suggesting a potential therapeutic avenue to mitigate neuroinflammation. This review not only highlights the critical role of microbiota in AD pathology but also offers a ray of hope by suggesting that modulating gut and oral microbiota could represent a novel therapeutic strategy for reducing neuroinflammation and slowing disease progression.
Collapse
Affiliation(s)
- Cristina Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| | - Aurelian Anghelescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Vlad Ciobanu
- Department of Computer Science and Engineering, Faculty for Automatic Control and Computers, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Aura Spînu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Ioana Andone
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mihaela Mandu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Roxana Bistriceanu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mihai Băilă
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Ruxandra-Luciana Postoiu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Andreea-Iulia Vlădulescu-Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Sebastian Giuvara
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Alin-Daniel Malaelea
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| |
Collapse
|