1
|
Meng M, Guo Y, Chen Y, Li X, Zhang B, Xie Z, Liu J, Zhao Z, Liu Y, Zhang T, Qiao Y, Shang B, Zhou Q. Cancer/testis-45A1 promotes cervical cancer cell tumorigenesis and drug resistance by activating oncogenic SRC and downstream signaling pathways. Cell Oncol (Dordr) 2024; 47:657-676. [PMID: 37924456 PMCID: PMC11090944 DOI: 10.1007/s13402-023-00891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Cancer/testis antigen-45A1 (CT45A1) is overexpressed in various types of cancer but is not expressed in healthy women. The role of CT45A1 in cervical cancer has not yet been described in the literature. PURPOSE The aim of this research was to study the role of CT45A1 in cervical cancer progression and drug resistance, elucidate the mechanisms underlying CT45A1-mediated tumorigenesis and investigate CT45A1 as a biomarker for cervical cancer diagnosis, prognostic prediction, and targeted therapy. METHODS The CT45A1 levels in the tumors from cervical cancer patients were measured using immunohistochemical staining. The role and mechanisms underlying CT45A1-mediated cervical cancer cell tumor growth, invasion, and drug resistance were studied using xenograft mice, cervical cancer cells, immunohistochemistry, RNA-seq, real-time qPCR, Chromatin immunoprecipitation and Western blotting. RESULTS CT45A1 levels were notably high in the tumor tissues of human cervical cancer patients compared to the paracancerous tissues (p < 0.001). Overexpression of CT45A1 was closely associated with poor prognosis in cervical cancer patients. CT45A1 promoted cervical cancer cell tumor growth, invasion, neovascularization, and drug resistance. Mechanistically, CT45A1 promoted the expression of 128 pro-tumorigenic genes and concurrently activated key signaling pathways, including the oncogenic SRC, ERK, CREB, and YAP/TAZ signaling pathways. Furthermore, CT45A1-mediated tumorigenesis and drug resistance were markedly inhibited by the small molecule lycorine. CONCLUSION CT45A1 promotes cervical cancer cell tumorigenesis, neovascularization, and drug resistance by activating oncogenic SRC and downstream tumorigenic signaling pathways. These findings provide new insight into the pathogenesis of cervical cancer and offer a new platform for the development of novel therapeutics against cervical cancer.
Collapse
Affiliation(s)
- Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- The Ninth Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yan Guo
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China.
| | - Yu Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Xu Li
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Bin Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Zhijia Xie
- Department of Obstetrics and Gynecology, The Ninth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Juntao Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Zhe Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, China
| | - Yuxi Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Tong Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Bingxue Shang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Suzhou Institute of Systems Medicine, Suzhou, China.
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China.
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
- National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
- The Ninth Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
2
|
Pikala M, Burzyńska M. Trends in Mortality Due to Malignant Neoplasms of Female Genital Organs in Poland in the Period 2000-2021-A Population-Based Study. Cancers (Basel) 2024; 16:1038. [PMID: 38473394 PMCID: PMC11154286 DOI: 10.3390/cancers16051038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study is to assess mortality trends due to malignant neoplasms of female genital organs (MNFGOs) in Poland between 2000 and 2021. For the purpose of the study, the authors used data on all deaths of Polish female inhabitants due to MNFGO between 2000 and 2021, obtained from the Statistics Poland database. The standardised death rates (SDR), potential years of life lost (PYLL), annual percentage change (APC) and average annual percentage change (AAPC) were calculated. Between the years 2000 and 2021, 138,000 women died due to MNFGOs in Poland. Of this number, 54,975 (39.8%) deaths were caused by ovarian cancer, 37,487 (27.2%) by cervix uteri cancer, and 26,231 (19.0%) by corpus uteri cancer. A decrease in mortality due to cervix uteri cancer (APC = -2.4%, p < 0.05) was the most favourable change that occurred in the period 2000-2021, while the least favourable change was an increase in mortality due to corpus uteri cancer for the period 2005-2019 (APC = 5.0%, p < 0.05). SDRs due to ovarian cancer showed a decreasing trend between 2007 and 2021 (APC = -0.5%, p < 0.05). The standardised PYLL index due to cervical cancer was 167.7 per 100,000 women in 2000 and decreased to 75.0 in 2021 (AAPC = -3.7, p < 0.05). The number of lost years of life due to ovarian cancer decreased from 143.8 in 2000 to 109.5 in 2021 (AAPC = -1.3, p < 0.05). High values of death rates due to MNFGO in Poland, compared to other European countries, show that there is a need to promote preventive programmes and continue to monitor changes in mortality.
Collapse
Affiliation(s)
- Małgorzata Pikala
- Department of Epidemiology and Biostatistics, The Chair of Social and Preventive Medicine of the Medical University of Lodz, 90-752 Lodz, Poland;
| | | |
Collapse
|
3
|
Warren JR, Hopfer S, Fields EJ, Natarajan S, Belue R, McKee FX, Hecht M, Lebed JP. Digital HPV education to increase vaccine uptake among low income women. PEC INNOVATION 2023; 2:100111. [PMID: 37214515 PMCID: PMC10194403 DOI: 10.1016/j.pecinn.2022.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 05/24/2023]
Abstract
Objective The objective of this formative study was to gather women's perspectives in the design and communication modalities of a health kiosk set within a Planned Parenthood setting to promote patient education about the Human papillomavirus (HPV) and to motivate uptake of the HPV vaccine. Methods Twenty-four women aged 18-35 participated in in-depth one-on-one interviews at a Planned Parenthood health center, which were analyzed in code-associated categories using NVivo11 Pro. Results Most women showed receptivity to using an on-site health kiosk, as well as QR codes linked to text messages, to receive HPV-related health information outside of the clinic setting and reminders. Participants provided suggestions for kiosk design and communication modalities. Conclusions Among low-income women we interviewed at Planned Parenthood, increasing HPV vaccination rates necessitates engaging digital health tools which incorporate both the preferences and needs of vulnerable populations. Innovation Designing a point-of-service health kiosk that 1) draws on user preferences early in the design phase, 2) integrates multiple communication technologies, and 3) disseminates culturally grounded HPV vaccination decisions narratives that are tailored to vaccination awareness level is a promising approach in reducing barriers to HPV vaccine education and vaccine uptake among low-income women at safety-net clinics.
Collapse
Affiliation(s)
| | - Suellen Hopfer
- Department of Health, Society, and Behavior, University of California, Irvine, Irvine, USA
| | | | - Sahana Natarajan
- Center for African American Health Disparities Education and Research, Trenton, USA
| | | | | | | | - Joel P. Lebed
- Planned Parenthood Southeastern Pennsylvania, Philadelphia, USA
| |
Collapse
|
4
|
Akash S, Bayıl I, Hossain MS, Islam MR, Hosen ME, Mekonnen AB, Nafidi HA, Bin Jardan YA, Bourhia M, Bin Emran T. Novel computational and drug design strategies for inhibition of human papillomavirus-associated cervical cancer and DNA polymerase theta receptor by Apigenin derivatives. Sci Rep 2023; 13:16565. [PMID: 37783745 PMCID: PMC10545697 DOI: 10.1038/s41598-023-43175-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
The present study deals with the advanced in-silico analyses of several Apigenin derivatives to explore human papillomavirus-associated cervical cancer and DNA polymerase theta inhibitor properties by molecular docking, molecular dynamics, QSAR, drug-likeness, PCA, a dynamic cross-correlation matrix and quantum calculation properties. The initial literature study revealed the potent antimicrobial and anticancer properties of Apigenin, prompting the selection of its potential derivatives to investigate their abilities as inhibitors of human papillomavirus-associated cervical cancer and DNA polymerase theta. In silico molecular docking was employed to streamline the findings, revealing promising energy-binding interactions between all Apigenin derivatives and the targeted proteins. Notably, Apigenin 4'-O-Rhamnoside and Apigenin-4'-Alpha-L-Rhamnoside demonstrated higher potency against the HPV45 oncoprotein E7 (PDB ID 2EWL), while Apigenin and Apigenin 5-O-Beta-D-Glucopyranoside exhibited significant binding energy against the L1 protein in humans. Similarly, a binding affinity range of - 7.5 kcal/mol to - 8.8 kcal/mol was achieved against DNA polymerase theta, indicating the potential of Apigenin derivatives to inhibit this enzyme (PDB ID 8E23). This finding was further validated through molecular dynamic simulation for 100 ns, analyzing parameters such as RMSD, RMSF, SASA, H-bond, and RoG profiles. The results demonstrated the stability of the selected compounds during the simulation. After passing the stability testing, the compounds underwent screening for ADMET, pharmacokinetics, and drug-likeness properties, fulfilling all the necessary criteria. QSAR, PCA, dynamic cross-correlation matrix, and quantum calculations were conducted, yielding satisfactory outcomes. Since this study utilized in silico computational approaches and obtained outstanding results, further validation is crucial. Therefore, additional wet-lab experiments should be conducted under in vivo and in vitro conditions to confirm the findings.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh.
| | - Imren Bayıl
- Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey
| | - Md Saddam Hossain
- Department of Biomedical Engineering, Faculty of Engineering & Technology, Islamic University, Kushtia, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh
| | - Md Eram Hosen
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | | | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325, Quebec City, QC, G1V 0A6, Canada
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000, Laayoune, Morocco
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
5
|
Elbjorn M, Provencio J, Phillips P, Sainz J, Harrison N, Rocco DD, Jaramillo A, Jain P, Lozano A, Hood RL. An Innovative Polymeric Platform for Controlled and Localized Drug Delivery. Pharmaceutics 2023; 15:1795. [PMID: 37513982 PMCID: PMC10385353 DOI: 10.3390/pharmaceutics15071795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Precision medicine aims to optimize pharmacological treatments by considering patients' genetic, phenotypic, and environmental factors, enabling dosages personalized to the individual. To address challenges associated with oral and injectable administration approaches, implantable drug delivery systems have been developed. These systems overcome issues like patient adherence, bioavailability, and first-pass metabolism. Utilizing new combinations of biodegradable polymers, the proposed solution, a Polymeric Controlled Release System (PCRS), allows minimally invasive placement and controlled drug administration over several weeks. This study's objective was to show that the PCRS exhibits a linear biphasic controlled release profile, which would indicate potential as an effective treatment vehicle for cervical malignancies. An injection mold technique was developed for batch manufacturing of devices, and in vitro experiments demonstrated that the device's geometry and surface area could be varied to achieve various drug release profiles. This study's results motivate additional development of the PCRS to treat cervical cancer, as well as other malignancies, such as lung, testicular, and ovarian cancers.
Collapse
Affiliation(s)
- Monica Elbjorn
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jacob Provencio
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Paige Phillips
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Javier Sainz
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Noah Harrison
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - David Di Rocco
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ada Jaramillo
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Priya Jain
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Tecan, Morrisville, NC 27560, USA
| | - Alejandro Lozano
- Department of Obstetrics & Gynecology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - R Lyle Hood
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
6
|
Lu Z, Zhao P, Lu H, Xiao M. Analyses of human papillomavirus, Chlamydia trachomatis, Ureaplasma urealyticum, Neisseria gonorrhoeae, and co-infections in a gynecology outpatient clinic in Haikou area, China. BMC Womens Health 2023; 23:117. [PMID: 36944923 PMCID: PMC10029165 DOI: 10.1186/s12905-023-02259-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The purpose of this study was to study the infection rates of Chlamydia trachomatis (CT), Ureaplasma urealyticum (UU), Neisseria gonorrhoeae (NG), and co-infections with human papillomavirus (HPV) in a hospital gynecology outpatient clinic in the Haikou region in 2021. METHODS From January to December 2021, the Women and Children Medical Center of Hainan Province collected 2389 samples of cervical exfoliated cells and vaginal swab specimens from gynecologic outpatients. The samples were then analyzed descriptively for data, and the detection rate of each pathogen was tallied. All vaginal swabs were obtained for CT, UU, and NG DNA testing, and cervical exfoliated cells for HPV genotyping. Analyses were performed on the detection rate of each group. RESULTS In 2389 samples, the frequencies of pathogen identification among the 2389 samples were as follows: UU (58.43%); HPV (17.29%); CT (7.99%); and NG (0.38%). HPV, CT, UU, and NG were detected in 33.33%, 22.55%, 77.45%, and 2.94% of individuals between 15 and 20 years of age, respectively. The detection rates of CT, UU, and NG were substantially greater in the HPV-positive group than the the HPV-negative group (P < 0.05). CONCLUSION Among gynecologic outpatients at a hospital in the Haikou area, the probability of mixed infections with genital tract pathogens in HPV-positive patients was higher compared to HPV-negative patients. Reproductive tract infections are becoming more prevalent in younger people, hence adolescent sexual health education needs improvement.
Collapse
Affiliation(s)
- Zhe Lu
- Clinical Laboratory, Women and Children's Health Care Center of Hainan, 75 Longkun Nan Road, Haikou City, 570100, Hainan Province, China
| | - Peizhen Zhao
- Clinical Laboratory, Women and Children's Health Care Center of Hainan, 75 Longkun Nan Road, Haikou City, 570100, Hainan Province, China
| | - Huijun Lu
- Clinical Laboratory, Women and Children's Health Care Center of Hainan, 75 Longkun Nan Road, Haikou City, 570100, Hainan Province, China
| | - Meifang Xiao
- Clinical Laboratory, Women and Children's Health Care Center of Hainan, 75 Longkun Nan Road, Haikou City, 570100, Hainan Province, China.
| |
Collapse
|
7
|
Giannini A, Bogani G, Vizza E, Chiantera V, Laganà AS, Muzii L, Salerno MG, Caserta D, D’Oria O. Advances on Prevention and Screening of Gynecologic Tumors: Are We Stepping Forward? Healthcare (Basel) 2022; 10:1605. [PMID: 36141217 PMCID: PMC9498501 DOI: 10.3390/healthcare10091605] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
According to 2020 comprehensive global cancer statistics published by the International Agency for Research on Cancer, gynecologic malignancies accounted overall for 16 [...].
Collapse
Affiliation(s)
- Andrea Giannini
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University, 00189 Rome, Italy
| | - Giorgio Bogani
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00185 Rome, Italy
| | - Enrico Vizza
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCSS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Vito Chiantera
- Unit of Gynecologic Oncology, ARNAS “Civico-Di Cristina-Benfratelli”, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Antonio Simone Laganà
- Unit of Gynecologic Oncology, ARNAS “Civico-Di Cristina-Benfratelli”, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00185 Rome, Italy
| | - Maria Giovanna Salerno
- Obstetrics and Gynecological Unit, Department of Woman’s and Child’s Health, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Donatella Caserta
- Gynecology Division, Department of Medical and Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Ottavia D’Oria
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University, 00189 Rome, Italy
| |
Collapse
|