1
|
Erdem F, Gitto S, Fusco S, Bausano MV, Serpi F, Albano D, Messina C, Sconfienza LM. Automated detection of bone lesions using CT and MRI: a systematic review. LA RADIOLOGIA MEDICA 2024; 129:1898-1905. [PMID: 39503845 DOI: 10.1007/s11547-024-01913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE The aim of this study was to systematically review the use of automated detection systems for identifying bone lesions based on CT and MRI, focusing on advancements in artificial intelligence (AI) applications. MATERIALS AND METHODS A literature search was conducted on PubMed and MEDLINE. Data were extracted and grouped into three main categories, namely baseline study characteristics, model validation strategies, and the type of AI algorithms. RESULTS A total of 10 studies were selected and analyzed, including 2,768 patients overall with a median of 187 per study. These studies utilized various AI algorithms, predominantly deep learning models (6 studies) such as Convolutional Neural Networks. Among machine learning validation strategies, K-fold cross-validation was the mostly used (5 studies). Clinical validation was performed using data from the same institution (internal testing) in 8 studies and from both the same and different (external testing) institutions in 1 study, respectively. CONCLUSION AI, particularly deep learning, holds significant promise in enhancing diagnostic accuracy and efficiency. However, the review highlights several limitations, such as the lack of standardized validation methods and the limited use of external datasets for testing. Future research should address these gaps to ensure the reliability and applicability of AI-based detection systems in clinical settings.
Collapse
Affiliation(s)
- Fatih Erdem
- Pediatric Radiology Department, Ankara University Hospital, Ankara, Turkey
| | - Salvatore Gitto
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, via Cristina Belgioioso 173, 20157, Milan, MI, Italy
| | - Stefano Fusco
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Maria Vittoria Bausano
- Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Milan, Italy
| | - Francesca Serpi
- IRCCS Istituto Ortopedico Galeazzi, via Cristina Belgioioso 173, 20157, Milan, MI, Italy
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, via Cristina Belgioioso 173, 20157, Milan, MI, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Carmelo Messina
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- UOC Radiodiagnostica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan, Italy
| | - Luca Maria Sconfienza
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.
- IRCCS Istituto Ortopedico Galeazzi, via Cristina Belgioioso 173, 20157, Milan, MI, Italy.
| |
Collapse
|
2
|
Li W, Gou F, Wu J. Artificial intelligence auxiliary diagnosis and treatment system for breast cancer in developing countries. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:395-413. [PMID: 38189731 DOI: 10.3233/xst-230194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND In many developing countries, a significant number of breast cancer patients are unable to receive timely treatment due to a large population base, high patient numbers, and limited medical resources. OBJECTIVE This paper proposes a breast cancer assisted diagnosis system based on electronic medical records. The goal of this system is to address the limitations of existing systems, which primarily rely on structured electronic records and may miss crucial information stored in unstructured records. METHODS The proposed approach is a breast cancer assisted diagnosis system based on electronic medical records. The system utilizes breast cancer enhanced convolutional neural networks with semantic initialization filters (BC-INIT-CNN). It extracts highly relevant tumor markers from unstructured medical records to aid in breast cancer staging diagnosis and effectively utilizes the important information present in unstructured records. RESULTS The model's performance is assessed using various evaluation metrics. Such as accuracy, ROC curves, and Precision-Recall curves. Comparative analysis demonstrates that the BC-INIT-CNN model outperforms several existing methods in terms of accuracy and computational efficiency. CONCLUSIONS The proposed breast cancer assisted diagnosis system based on BC-INIT-CNN showcases the potential to address the challenges faced by developing countries in providing timely treatment to breast cancer patients. By leveraging unstructured medical records and extracting relevant tumor markers, the system enables accurate staging diagnosis and enhances the utilization of valuable information.
Collapse
Affiliation(s)
- Wenxiu Li
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Fangfang Gou
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Jia Wu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton VIC, Australia
| |
Collapse
|
3
|
He Z, Liu J, Gou F, Wu J. An Innovative Solution Based on TSCA-ViT for Osteosarcoma Diagnosis in Resource-Limited Settings. Biomedicines 2023; 11:2740. [PMID: 37893113 PMCID: PMC10604772 DOI: 10.3390/biomedicines11102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Identifying and managing osteosarcoma pose significant challenges, especially in resource-constrained developing nations. Advanced diagnostic methods involve isolating the nucleus from cancer cells for comprehensive analysis. However, two main challenges persist: mitigating image noise during the capture and transmission of cellular sections, and providing an efficient, accurate, and cost-effective solution for cell nucleus segmentation. To tackle these issues, we introduce the Twin-Self and Cross-Attention Vision Transformer (TSCA-ViT). This pioneering AI-based system employs a directed filtering algorithm for noise reduction and features an innovative transformer architecture with a twin attention mechanism for effective segmentation. The model also incorporates cross-attention-enabled skip connections to augment spatial information. We evaluated our method on a dataset of 1000 osteosarcoma pathology slide images from the Second People's Hospital of Huaihua, achieving a remarkable average precision of 97.7%. This performance surpasses traditional methodologies. Furthermore, TSCA-ViT offers enhanced computational efficiency owing to its fewer parameters, which results in reduced time and equipment costs. These findings underscore the superior efficacy and efficiency of TSCA-ViT, offering a promising approach for addressing the ongoing challenges in osteosarcoma diagnosis and treatment, particularly in settings with limited resources.
Collapse
Affiliation(s)
- Zengxiao He
- School of Computer Science and Engineering, Central South University, Changsha 410083, China;
| | - Jun Liu
- The Second People’s Hospital of Huaihua, Huaihua 418000, China
| | - Fangfang Gou
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China;
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China;
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China;
- Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton, VIC 3800, Australia
| |
Collapse
|
4
|
Stafie CS, Sufaru IG, Ghiciuc CM, Stafie II, Sufaru EC, Solomon SM, Hancianu M. Exploring the Intersection of Artificial Intelligence and Clinical Healthcare: A Multidisciplinary Review. Diagnostics (Basel) 2023; 13:1995. [PMID: 37370890 PMCID: PMC10297646 DOI: 10.3390/diagnostics13121995] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Artificial intelligence (AI) plays a more and more important role in our everyday life due to the advantages that it brings when used, such as 24/7 availability, a very low percentage of errors, ability to provide real time insights, or performing a fast analysis. AI is increasingly being used in clinical medical and dental healthcare analyses, with valuable applications, which include disease diagnosis, risk assessment, treatment planning, and drug discovery. This paper presents a narrative literature review of AI use in healthcare from a multi-disciplinary perspective, specifically in the cardiology, allergology, endocrinology, and dental fields. The paper highlights data from recent research and development efforts in AI for healthcare, as well as challenges and limitations associated with AI implementation, such as data privacy and security considerations, along with ethical and legal concerns. The regulation of responsible design, development, and use of AI in healthcare is still in early stages due to the rapid evolution of the field. However, it is our duty to carefully consider the ethical implications of implementing AI and to respond appropriately. With the potential to reshape healthcare delivery and enhance patient outcomes, AI systems continue to reveal their capabilities.
Collapse
Affiliation(s)
- Celina Silvia Stafie
- Department of Preventive Medicine and Interdisciplinarity, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania;
| | - Irina-Georgeta Sufaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania
| | - Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania
| | - Ingrid-Ioana Stafie
- Endocrinology Residency Program, Sf. Spiridon Clinical Emergency Hospital, Independentei 1, 700111 Iasi, Romania
| | | | - Sorina Mihaela Solomon
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania
| | - Monica Hancianu
- Pharmacognosy-Phytotherapy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania
| |
Collapse
|
5
|
Lv B, Liu F, Li Y, Nie J, Gou F, Wu J. Artificial Intelligence-Aided Diagnosis Solution by Enhancing the Edge Features of Medical Images. Diagnostics (Basel) 2023; 13:1063. [PMID: 36980371 PMCID: PMC10047640 DOI: 10.3390/diagnostics13061063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Bone malignant tumors are metastatic and aggressive. The manual screening of medical images is time-consuming and laborious, and computer technology is now being introduced to aid in diagnosis. Due to a large amount of noise and blurred lesion edges in osteosarcoma MRI images, high-precision segmentation methods require large computational resources and are difficult to use in developing countries with limited conditions. Therefore, this study proposes an artificial intelligence-aided diagnosis scheme by enhancing image edge features. First, a threshold screening filter (TSF) was used to pre-screen the MRI images to filter redundant data. Then, a fast NLM algorithm was introduced for denoising. Finally, a segmentation method with edge enhancement (TBNet) was designed to segment the pre-processed images by fusing Transformer based on the UNet network. TBNet is based on skip-free connected U-Net and includes a channel-edge cross-fusion transformer and a segmentation method with a combined loss function. This solution optimizes diagnostic efficiency and solves the segmentation problem of blurred edges, providing more help and reference for doctors to diagnose osteosarcoma. The results based on more than 4000 osteosarcoma MRI images show that our proposed method has a good segmentation effect and performance, with Dice Similarity Coefficient (DSC) reaching 0.949, and show that other evaluation indexes such as Intersection of Union (IOU) and recall are better than other methods.
Collapse
Affiliation(s)
- Baolong Lv
- School of Modern Service Management, Shandong Youth University of Political Science, Jinan 250102, China; (B.L.); (Y.L.)
| | - Feng Liu
- School of Information Engineering, Shandong Youth University of Political Science, Jinan 250102, China
- New Technology Research and Development Center of Intelligent Information Controlling in Universities of Shandong, Jinan 250103, China
| | - Yulin Li
- School of Modern Service Management, Shandong Youth University of Political Science, Jinan 250102, China; (B.L.); (Y.L.)
| | - Jianhua Nie
- Shandong Provincial People’s Government Administration Guarantee Center, Jinan 250011, China;
| | - Fangfang Gou
- School of Computer Science and Engineering, Central South University, Changsha 410017, China;
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha 410017, China;
- Research Center for Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
6
|
Kumar K, Kumar P, Deb D, Unguresan ML, Muresan V. Artificial Intelligence and Machine Learning Based Intervention in Medical Infrastructure: A Review and Future Trends. Healthcare (Basel) 2023; 11:healthcare11020207. [PMID: 36673575 PMCID: PMC9859198 DOI: 10.3390/healthcare11020207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
People in the life sciences who work with Artificial Intelligence (AI) and Machine Learning (ML) are under increased pressure to develop algorithms faster than ever. The possibility of revealing innovative insights and speeding breakthroughs lies in using large datasets integrated on several levels. However, even if there is more data at our disposal than ever, only a meager portion is being filtered, interpreted, integrated, and analyzed. The subject of this technology is the study of how computers may learn from data and imitate human mental processes. Both an increase in the learning capacity and the provision of a decision support system at a size that is redefining the future of healthcare are enabled by AI and ML. This article offers a survey of the uses of AI and ML in the healthcare industry, with a particular emphasis on clinical, developmental, administrative, and global health implementations to support the healthcare infrastructure as a whole, along with the impact and expectations of each component of healthcare. Additionally, possible future trends and scopes of the utilization of this technology in medical infrastructure have also been discussed.
Collapse
Affiliation(s)
- Kamlesh Kumar
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research And Management, Ahmedabad 380026, India
| | - Prince Kumar
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research And Management, Ahmedabad 380026, India
| | - Dipankar Deb
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research And Management, Ahmedabad 380026, India
- Correspondence:
| | | | - Vlad Muresan
- Department of Automation, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Zhan X, Liu J, Long H, Zhu J, Tang H, Gou F, Wu J. An Intelligent Auxiliary Framework for Bone Malignant Tumor Lesion Segmentation in Medical Image Analysis. Diagnostics (Basel) 2023; 13:223. [PMID: 36673032 PMCID: PMC9858155 DOI: 10.3390/diagnostics13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Bone malignant tumors are metastatic and aggressive, with poor treatment outcomes and prognosis. Rapid and accurate diagnosis is crucial for limb salvage and increasing the survival rate. There is a lack of research on deep learning to segment bone malignant tumor lesions in medical images with complex backgrounds and blurred boundaries. Therefore, we propose a new intelligent auxiliary framework for the medical image segmentation of bone malignant tumor lesions, which consists of a supervised edge-attention guidance segmentation network (SEAGNET). We design a boundary key points selection module to supervise the learning of edge attention in the model to retain fine-grained edge feature information. We precisely locate malignant tumors by instance segmentation networks while extracting feature maps of tumor lesions in medical images. The rich contextual-dependent information in the feature map is captured by mixed attention to better understand the uncertainty and ambiguity of the boundary, and edge attention learning is used to guide the segmentation network to focus on the fuzzy boundary of the tumor region. We implement extensive experiments on real-world medical data to validate our model. It validates the superiority of our method over the latest segmentation methods, achieving the best performance in terms of the Dice similarity coefficient (0.967), precision (0.968), and accuracy (0.996). The results prove the important contribution of the framework in assisting doctors to improve the accuracy of diagnosis and clinical efficiency.
Collapse
Affiliation(s)
- Xiangbing Zhan
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Jun Liu
- The Second People’s Hospital of Huaihua, Huaihua 418000, China
| | - Huiyun Long
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Jun Zhu
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
| | - Haoyu Tang
- The First People’s Hospital of Huaihua, Huaihua 418000, China
| | - Fangfang Gou
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
| | - Jia Wu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|