1
|
Alshardan A, Alruwais N, Alqahtani H, Alshuhail A, Almukadi WS, Sayed A. Leveraging transfer learning-driven convolutional neural network-based semantic segmentation model for medical image analysis using MRI images. Sci Rep 2024; 14:30549. [PMID: 39695183 DOI: 10.1038/s41598-024-81966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Recognition and segmentation of brain tumours (BT) using MR images are valuable and tedious processes in the healthcare industry. Earlier diagnosis and localization of BT provide timely options to select effective treatment plans for the doctors and can save lives. BT segmentation from Magnetic Resonance Images (MRI) is considered a big challenge owing to the difficulty of BT tissues, and segmenting them from the healthier tissue is challenging when manual segmentation is done through radiologists. Among the recent proposals for the brain segmentation method, the BT segmentation method based on machine learning (ML) and image processing could be better. Thus, the DL-based brain segmentation method is extensively applied, and the convolutional network has better brain segmentation effects. The deep convolutional network model has the problem of a large loss of information and a large number of parameters in the encoding and decoding processes. With this motivation, this article presents a new Deep Transfer Learning with Semantic Segmentation based Medical Image Analysis (DTLSS-MIA) technique on MRI images. The DTLSS-MIA technique aims to segment the affected BT area in the MRI images. At first, the presented method utilizes a Median filtering (MF) approach to optimize the quality of MRI images and remove the noise. For the semantic segmentation method, the DTLSS-MIA method follows DeepLabv3 + with a backbone of the EfficientNet model for determining the affected brain region. Moreover, the CapsNet architecture is employed for the feature extraction process. Lastly, the crayfish optimization (CFO) technique with diffusion variational autoencoder (D-VAE) architecture is used as a classification mechanism, and the CFO technique effectively tunes the D-VAE hyperparameter. The simulation analysis of the DTLSS-MIA technique is validated on a benchmark dataset. The performance validation of the DTLSS-MIA technique exhibited a superior accuracy value of 99.53% over other methods.
Collapse
Affiliation(s)
- Amal Alshardan
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Nuha Alruwais
- Department of Computer Science and Engineering, College of Applied Studies and Community Services, King Saud University, Saudi Arabia, P.O.Box 22459, Riyadh, 11495, Saudi Arabia
| | - Hamed Alqahtani
- Department of Information Systems, College of Computer Science, Center of Artificial Intelligence, Unit of Cybersecurity, King Khalid University, Abha, Saudi Arabia
| | - Asma Alshuhail
- Department of Information Systems, College of Computer Sciences & Information Technology, King Faisal University, Hofuf, Saudi Arabia
| | - Wafa Sulaiman Almukadi
- Department of Software Engineering, College of Engineering and Computer Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahmed Sayed
- Research Center, Future University in Egypt, New Cairo, 11835, Egypt
| |
Collapse
|
2
|
Pitarch C, Ungan G, Julià-Sapé M, Vellido A. Advances in the Use of Deep Learning for the Analysis of Magnetic Resonance Image in Neuro-Oncology. Cancers (Basel) 2024; 16:300. [PMID: 38254790 PMCID: PMC10814384 DOI: 10.3390/cancers16020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Machine Learning is entering a phase of maturity, but its medical applications still lag behind in terms of practical use. The field of oncological radiology (and neuro-oncology in particular) is at the forefront of these developments, now boosted by the success of Deep-Learning methods for the analysis of medical images. This paper reviews in detail some of the most recent advances in the use of Deep Learning in this field, from the broader topic of the development of Machine-Learning-based analytical pipelines to specific instantiations of the use of Deep Learning in neuro-oncology; the latter including its use in the groundbreaking field of ultra-low field magnetic resonance imaging.
Collapse
Affiliation(s)
- Carla Pitarch
- Department of Computer Science, Universitat Politècnica de Catalunya (UPC BarcelonaTech) and Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, 08034 Barcelona, Spain;
- Eurecat, Digital Health Unit, Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Gulnur Ungan
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (G.U.); (M.J.-S.)
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
| | - Margarida Julià-Sapé
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (G.U.); (M.J.-S.)
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
| | - Alfredo Vellido
- Department of Computer Science, Universitat Politècnica de Catalunya (UPC BarcelonaTech) and Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, 08034 Barcelona, Spain;
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
| |
Collapse
|
3
|
Zhao Y, Guo Q, Zhang Y, Zheng J, Yang Y, Du X, Feng H, Zhang S. Application of Deep Learning for Prediction of Alzheimer's Disease in PET/MR Imaging. Bioengineering (Basel) 2023; 10:1120. [PMID: 37892850 PMCID: PMC10604050 DOI: 10.3390/bioengineering10101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide. Positron emission tomography/magnetic resonance (PET/MR) imaging is a promising technique that combines the advantages of PET and MR to provide both functional and structural information of the brain. Deep learning (DL) is a subfield of machine learning (ML) and artificial intelligence (AI) that focuses on developing algorithms and models inspired by the structure and function of the human brain's neural networks. DL has been applied to various aspects of PET/MR imaging in AD, such as image segmentation, image reconstruction, diagnosis and prediction, and visualization of pathological features. In this review, we introduce the basic concepts and types of DL algorithms, such as feed forward neural networks, convolutional neural networks, recurrent neural networks, and autoencoders. We then summarize the current applications and challenges of DL in PET/MR imaging in AD, and discuss the future directions and opportunities for automated diagnosis, predictions of models, and personalized medicine. We conclude that DL has great potential to improve the quality and efficiency of PET/MR imaging in AD, and to provide new insights into the pathophysiology and treatment of this devastating disease.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Information Center, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Qianrui Guo
- Department of Nuclear Medicine, Beijing Cancer Hospital, Beijing 100142, China;
| | - Yukun Zhang
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Jia Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing 100094, China
| | - Xuemei Du
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Hongbo Feng
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Shuo Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| |
Collapse
|
4
|
Giansanti D. Bridging the Gap: Exploring Opportunities, Challenges, and Problems in Integrating Assistive Technologies, Robotics, and Automated Machines into the Health Domain. Healthcare (Basel) 2023; 11:2462. [PMID: 37685498 PMCID: PMC10487463 DOI: 10.3390/healthcare11172462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The field of healthcare is continually evolving and advancing due to new technologies and innovations [...].
Collapse
Affiliation(s)
- Daniele Giansanti
- National Centre for Innovative Technologies in Public Health, Italian National Institute of Health, 00161 Rome, Italy
| |
Collapse
|
5
|
Koyuncu H, Barstuğan M. A New Breakpoint to Classify 3D Voxels in MRI: A Space Transform Strategy with 3t2FTS-v2 and Its Application for ResNet50-Based Categorization of Brain Tumors. Bioengineering (Basel) 2023; 10:629. [PMID: 37370560 DOI: 10.3390/bioengineering10060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Three-dimensional (3D) image analyses are frequently applied to perform classification tasks. Herein, 3D-based machine learning systems are generally used/generated by examining two designs: a 3D-based deep learning model or a 3D-based task-specific framework. However, except for a new approach named 3t2FTS, a promising feature transform operating from 3D to two-dimensional (2D) space has not been efficiently investigated for classification applications in 3D magnetic resonance imaging (3D MRI). In other words, a state-of-the-art feature transform strategy is not available that achieves high accuracy and provides the adaptation of 2D-based deep learning models for 3D MRI-based classification. With this aim, this paper presents a new version of the 3t2FTS approach (3t2FTS-v2) to apply a transfer learning model for tumor categorization of 3D MRI data. For performance evaluation, the BraTS 2017/2018 dataset is handled that involves high-grade glioma (HGG) and low-grade glioma (LGG) samples in four different sequences/phases. 3t2FTS-v2 is proposed to effectively transform the features from 3D to 2D space by using two textural features: first-order statistics (FOS) and gray level run length matrix (GLRLM). In 3t2FTS-v2, normalization analyses are assessed to be different from 3t2FTS to accurately transform the space information apart from the usage of GLRLM features. The ResNet50 architecture is preferred to fulfill the HGG/LGG classification due to its remarkable performance in tumor grading. As a result, for the classification of 3D data, the proposed model achieves a 99.64% accuracy by guiding the literature about the importance of 3t2FTS-v2 that can be utilized not only for tumor grading but also for whole brain tissue-based disease classification.
Collapse
Affiliation(s)
- Hasan Koyuncu
- Electrical & Electronics Engineering Department, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya 42250, Türkiye
| | - Mücahid Barstuğan
- Electrical & Electronics Engineering Department, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya 42250, Türkiye
| |
Collapse
|
6
|
Bairagi VK, Gumaste PP, Rajput SH, Chethan K S. Automatic brain tumor detection using CNN transfer learning approach. Med Biol Eng Comput 2023:10.1007/s11517-023-02820-3. [PMID: 36949356 DOI: 10.1007/s11517-023-02820-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Automatic brain tumor detection is a challenging task as tumors vary in their position, mass, nature, and similarities found between brain lesions and normal tissues. The tumor detection is vital and urgent as it is related to the lifespan of the affected person. Medical experts commonly utilize advanced imaging practices such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound images to decide the presence of abnormal tissues. It is a very time-consuming task to extract the tumor information from the enormous quantity of information produced by MRI volumetric data examination using a manual approach. In manual tumor detection, precise identification of tumor along with its details is a complex task. Henceforth, reliable and automatic detection systems are vital. In this paper, convolutional neural network based automated brain tumor recognition approach is proposed to analyze the MRI images and classify them into tumorous and non-tumorous classes. Various convolutional neutral network architectures like Alexnet, VGG-16, GooGLeNet, and RNN are explored and compared together. The paper focuses on the tuning of the hyperparameters for the two architectures namely Alexnet and VGG-16. Exploratory results on BRATS 2013, BRATS 2015, and OPEN I dataset with 621 images confirmed that the accuracy of 98.67% is achieved using CNN Alexnet for automatic detection of brain tumors while testing on 125 images.
Collapse
Affiliation(s)
- Vinayak K Bairagi
- Department of Electronics and Telecommunication, AISSMS Institute of Information Technology, Pune, India.
| | - Pratima Purushottam Gumaste
- Department of Electronics and Telecommunication, JSPM's Jayawantrao Sawant College of Engineering, Pune, India
| | - Seema H Rajput
- Department of Electronics and Telecommunications, Cummins College of Engineering for Women, Savitribai Phule Pune University, Pune, India
| | - Chethan K S
- RV Institute of Technology and Management, Bangalore, India
| |
Collapse
|
7
|
Strunga M, Urban R, Surovková J, Thurzo A. Artificial Intelligence Systems Assisting in the Assessment of the Course and Retention of Orthodontic Treatment. Healthcare (Basel) 2023; 11:healthcare11050683. [PMID: 36900687 PMCID: PMC10000479 DOI: 10.3390/healthcare11050683] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
This scoping review examines the contemporary applications of advanced artificial intelligence (AI) software in orthodontics, focusing on its potential to improve daily working protocols, but also highlighting its limitations. The aim of the review was to evaluate the accuracy and efficiency of current AI-based systems compared to conventional methods in diagnosing, assessing the progress of patients' treatment and follow-up stability. The researchers used various online databases and identified diagnostic software and dental monitoring software as the most studied software in contemporary orthodontics. The former can accurately identify anatomical landmarks used for cephalometric analysis, while the latter enables orthodontists to thoroughly monitor each patient, determine specific desired outcomes, track progress, and warn of potential changes in pre-existing pathology. However, there is limited evidence to assess the stability of treatment outcomes and relapse detection. The study concludes that AI is an effective tool for managing orthodontic treatment from diagnosis to retention, benefiting both patients and clinicians. Patients find the software easy to use and feel better cared for, while clinicians can make diagnoses more easily and assess compliance and damage to braces or aligners more quickly and frequently.
Collapse
|