1
|
Kemperman PMJH, Vulink NCC, Smit C, Hovius JW, de Rie MA. Review of literature and clinical practice experience for the therapeutic management of Morgellons disease. J Eur Acad Dermatol Venereol 2024; 38:1300-1304. [PMID: 38308572 DOI: 10.1111/jdv.19831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
Morgellons disease (MD) is a rare and contentious health condition characterized by dermatological symptoms including slow-healing skin lesions 'attributed' to fibres emerging from or under the skin. Patients also report sensations of crawling, biting and infestation with inanimate objects. This review examines the aetiology, patient characteristics, epidemiology, historical context, correlation with Lyme disease, role of internet, impact on quality of life and treatment approaches for MD. Despite ongoing debate, MD is not officially recognized in medical classifications, with differing views on its aetiology. Some link MD to Lyme disease, while others view it as a variant of delusional infestation. The literature suggests both psychiatric and environmental factors may contribute. The manuscript explores the association with substance abuse, psychiatric comorbidities, infectious agents and the role of internet communities in shaping perceptions. MD's impact on quality of life is significant, yet often overlooked. Treatment approaches are varied due to limited evidence, with low-dose antipsychotics being considered effective, but patient beliefs may influence adherence. A patient-centred, multidisciplinary approach is emphasized, considering both the physical and psychological dimensions of MD. Addressing the controversies surrounding MD while focusing on patient well-being remains a critical challenge for healthcare professionals.
Collapse
Affiliation(s)
- P M J H Kemperman
- Department of Dermatology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Department of Dermatology, Dijklander Ziekenhuis location Purmerend, Hoorn, The Netherlands
| | - N C C Vulink
- Department of Psychiatry, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - C Smit
- Department of Dermatology, Dijklander Ziekenhuis location Purmerend, Hoorn, The Netherlands
| | - J W Hovius
- Section of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - M A de Rie
- Department of Dermatology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Dib El Jalbout J, Sati H, Ghalloub P, El Bejjani G, Karam R, Mago A, Salame M, Saoudi L, Desangles AB, Emmanuel N. Morgellons disease: a narrative review. Neurol Sci 2024; 45:2579-2591. [PMID: 38319480 DOI: 10.1007/s10072-024-07361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Morgellons disease is characterized by the persistent delusion of skin infestation, ultimately inflicting wounds and impairing quality of life. There is insufficient and conflicting research pertaining to this condition, imposing challenges on clinicians in understanding, diagnosing, and treating it. In this review, we summarize the available literature on Morgellons disease including its historical evolution, epidemiology, proposed pathophysiology, underlying structural and functional brain pathologies, typical and atypical clinical presentations, diagnosis, and treatment. A comprehensive review of the literature was conducted on PubMed, Embase, and Scopus using specified keywords. Selected articles were screened by two independent reviewers based on set inclusion and exclusion criteria. Conflicts were resolved by a third reviewer as needed. No limit to the date of selected articles was set due to the scarce literature available on the subject. Morgellons disease is an underdiagnosed entity, owing mostly to the lack of an established pathophysiology and treatment guidelines. While many authors classify it as a type of delusional infestation (DI), others correlate MD with an underlying spirochetal infection, namely Lyme disease. Neuroimaging studies have revealed abnormalities in the "fronto-striato-thalamo-parietal network", a finding common to patients with DI, in addition to alterations in structures related to the "Itch Processing Pathway". Patients tend to extract fibers from their skin lesions and place them in a match box hence the term "match box sign". The diagnosis is that of exclusion, requiring extensive work up to rule out secondary causes and differential diagnoses. Treatment is largely based on the use of antipsychotics, with or without cognitive behavioral therapy. Despite being a diagnosis of exclusion, clinicians must be aware of this entity and have a profound understanding of the pathogenesis underlying it. Upon clinical suspicion, secondary Morgellons should always be ruled out through a thorough history taking, physical examination, and laboratory exams. Despite the challenges brought by the heterogeneous presentation of the condition and the paucity of research revolving around it, the great impact that Morgellons disease has on patients' quality of life forms a pressing need for its adequate detection, diagnosis, and treatment.
Collapse
Affiliation(s)
- Jana Dib El Jalbout
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Heba Sati
- Faculty of Medicine and Medical Sciences, University of Balamand, Koura, Lebanon
| | - Perla Ghalloub
- Faculty of Medicine and Medical Sciences, University of Balamand, Koura, Lebanon
| | - Grace El Bejjani
- Department of Internal Medicine, Lebanese American University Medical Center Rizk Hospital, Beirut, Lebanon
| | - Rim Karam
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Arpit Mago
- Jawaharlal Nehru Medical College, Belgaum, Karnataka, India
| | - Marita Salame
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Lara Saoudi
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | | | - Nancy Emmanuel
- Department of Dermatology, Hospital das Clínicas of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Cruickshank D, Hamilton DE, Iloba I, Jensen GS. Secreted Metabolites from Pseudomonas, Staphylococcus, and Borrelia Biofilm: Modulation of Immunogenicity by a Nutraceutical Enzyme and Botanical Blend. Microorganisms 2024; 12:991. [PMID: 38792820 PMCID: PMC11124038 DOI: 10.3390/microorganisms12050991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Bacterial biofilms are hardy, adaptable colonies, evading immune recognition while triggering and sustaining inflammation. The goals for this study were to present a method for testing the immunogenicity of secreted metabolites from pathogenic biofilm and to document whether biofilm treated with a nutraceutical enzyme and botanical blend (NEBB) showed evidence of reprogrammed bacterial metabolism, potentially becoming more recognizable to the immune system. We screened immune-modulating properties of metabolites from established biofilm from Pseudomonas aeruginosa (Pa), Stapholycoccus simulans (Ss), and Borrelia burgdorferi (Bb). Secreted metabolites significantly increased the cytokine production by human peripheral blood mononuclear cells, including Interleukin-1-beta (IL-1β), Interleukin-6 (IL-6), macrophage inflammatory protein-1-alpha (MIP-1α), tumor necrosis factor-alpha (TNF-α), interleukin-1 receptor antagonist (IL-1ra), and interleukin-10 (IL-10). Pa metabolites triggered the most robust increase in IL-1β, whereas Bb metabolites triggered the most robust increase in IL-10. NEBB-disrupted biofilm produced metabolites triggering altered immune modulation compared to metabolites from untreated biofilm. Metabolites from NEBB-disrupted biofilm triggered increased MIP-1α levels and reduced IL-10 levels, suggesting a reduced ability to suppress the recruitment of phagocytes compared to untreated biofilm. The results suggest that nutraceutical biofilm disruption offers strategies for inflammation management in chronic infectious illnesses. Further clinical studies are warranted to evaluate clinical correlations in infected human hosts.
Collapse
Affiliation(s)
| | | | - Ifeanyi Iloba
- NIS Labs, 1437 Esplanade, Klamath Falls, OR 97601, USA;
| | | |
Collapse
|
4
|
Patel NJ, Thippani S, Jathan J, Gaur G, Sawant JY, Pandya JM, Sapi E. Evidence for the presence of Borrelia burgdorferi in invasive breast cancer tissues. Eur J Microbiol Immunol (Bp) 2024; 14:143-153. [PMID: 38451280 PMCID: PMC11097788 DOI: 10.1556/1886.2024.00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, has recently been demonstrated to infect and enhance the invasive properties of breast cancer cells, while also influencing the expression of inflammatory chemokines (CXCL8 and CXCL10). This study investigates the presence of B. burgdorferi in invasive breast cancer tissues using commercially available, FDA-approved breast cancer tissue microarrays consisting of 350 ductal, 32 lobular, and 22 intraductal invasive breast carcinomas, alongside 29 normal breast tissues. Employing fluorescent immunohistochemical staining and high-resolution imaging, the findings revealed that approximately 20% of invasive lobular and ductal carcinomas, followed by 14% of intraductal carcinomas, tested positive for B. burgdorferi, while all normal breast tissues tested negative. PCR analysis further confirmed the presence of B. burgdorferi DNA in breast cancer tissues. Moreover, 25% of B. burgdorferi-positive tissues exhibited expression of both chemokines, CXCL8 and CXCL10, which was not observed in B. burgdorferi-negative tissues. Analysis of available patient data, including age, indicated a correlation between older patients and B. burgdorferi-positive tissues. This study validates the presence of B. burgdorferi in invasive breast cancer tissues and highlights the involvement of key CXCL family members associated with inflammatory processes.
Collapse
Affiliation(s)
- Niraj Jatin Patel
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Sahaja Thippani
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Jasmine Jathan
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Gauri Gaur
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Janhavi Y. Sawant
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Jay M. Pandya
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Eva Sapi
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| |
Collapse
|
5
|
Senejani AG, Maghsoudlou J, El-Zohiry D, Gaur G, Wawrzeniak K, Caravaglia C, Khatri VA, MacDonald A, Sapi E. Borrelia burgdorferi Co-Localizing with Amyloid Markers in Alzheimer's Disease Brain Tissues. J Alzheimers Dis 2021; 85:889-903. [PMID: 34897095 PMCID: PMC8842785 DOI: 10.3233/jad-215398] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Infections by bacterial or viral agents have been hypothesized to influence the etiology of neurodegenerative diseases. OBJECTIVE This study examined the potential presence of Borrelia burgdorferi spirochete, the causative agent of Lyme disease, in brain autopsy tissue of patients diagnosed with either Alzheimer's (AD) or Parkinson's diseases. METHODS Brain tissue sections from patients with age-matched controls were evaluated for antigen and DNA presence of B. burgdorferi using various methods. Positive Borrelia structures were evaluated for co-localization with biofilm and AD markers such as amyloid and phospho-tau (p-Tau) using immunohistochemical methods. RESULTS The results showed the presence of B. burgdorferi antigen and DNA in patients with AD pathology and among those, one of them was previously diagnosed with Lyme disease. Interestingly, a significant number of Borrelia-positive aggregates with a known biofilm marker, alginate, were found along with the spirochetal structures. Our immunohistochemical data also showed that Borrelia-positive aggregates co-localized with amyloid and anti-phospho-tau markers. To further prove the potential relationship of B. burgdorferi and amyloids, we infected two mammalian cell lines with B. burgdorferi which resulted in a significant increase in the expression of amyloid-β and p-Tau proteins in both cells lines post-infection. CONCLUSION These results indicate that B. burgdorferi can be found in AD brain tissues, not just in spirochete but a known antibiotics resistant biofilm form, and its co-localized amyloid markers. In summary, this study provides evidence for a likely association between B. burgdorferi infections and biofilm formation, AD pathology, and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Alireza G Senejani
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| | - Jasmin Maghsoudlou
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| | - Dina El-Zohiry
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| | - Gauri Gaur
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| | - Keith Wawrzeniak
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| | - Cristina Caravaglia
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| | - Vishwa A Khatri
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| | - Alan MacDonald
- Molecular Interrogation Research Laboratory, Naples, FL, USA
| | - Eva Sapi
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| |
Collapse
|
6
|
Torres JP, Senejani AG, Gaur G, Oldakowski M, Murali K, Sapi E. Ex Vivo Murine Skin Model for B. burgdorferi Biofilm. Antibiotics (Basel) 2020; 9:E528. [PMID: 32824942 PMCID: PMC7558507 DOI: 10.3390/antibiotics9090528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, has been recently shown to form biofilm structures in vitro and in vivo. Biofilms are tightly clustered microbes characterized as resistant aggregations that allow bacteria to withstand harsh environmental conditions, including the administration of antibiotics. Novel antibiotic combinations have recently been identified for B. burgdorferi in vitro, however, due to prohibiting costs, those agents have not been tested in an environment that can mimic the host tissue. Therefore, researchers cannot evaluate their true effectiveness against B. burgdorferi, especially its biofilm form. A skin ex vivo model system could be ideal for these types of experiments due to its cost effectiveness, reproducibility, and ability to investigate host-microbial interactions. Therefore, the main goal of this study was the establishment of a novel ex vivo murine skin biopsy model for B. burgdorferi biofilm research. Murine skin biopsies were inoculated with B. burgdorferi at various concentrations and cultured in different culture media. Two weeks post-infection, murine skin biopsies were analyzed utilizing immunohistochemical (IHC), reverse transcription PCR (RT-PCR), and various microscopy methods to determine B. burgdorferi presence and forms adopted as well as whether it remained live in the skin tissue explants. Our results showed that murine skin biopsies inoculated with 1 × 107 cells of B. burgdorferi and cultured in BSK-H + 6% rabbit serum media for two weeks yielded not just significant amounts of live B. burgdorferi spirochetes but biofilm forms as well. IHC combined with confocal and atomic force microscopy techniques identified specific biofilm markers and spatial distribution of B. burgdorferi aggregates in the infected skin tissues, confirming that they are indeed biofilms. In the future, this ex vivo skin model can be used to study development and antibiotic susceptibility of B. burgdorferi biofilms in efforts to treat Lyme disease effectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Eva Sapi
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (J.P.T.); (A.G.S.); (G.G.); (M.O.); (K.M.)
| |
Collapse
|
7
|
Kvich L, Burmølle M, Bjarnsholt T, Lichtenberg M. Do Mixed-Species Biofilms Dominate in Chronic Infections?-Need for in situ Visualization of Bacterial Organization. Front Cell Infect Microbiol 2020; 10:396. [PMID: 32850494 PMCID: PMC7419433 DOI: 10.3389/fcimb.2020.00396] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic infections present a serious economic burden to health-care systems. The severity and prevalence of chronic infections are continuously increasing due to an aging population and an elevated number of lifestyle related diseases such as diabetes. Treatment of chronic infections has proven difficult, mainly due to the presence of biofilms that render bacteria more tolerant toward antimicrobials and the host immune response. Chronic infections have been described to harbor several different bacterial species and it has been hypothesized that microscale interactions and mixed-species consortia are present as described for most natural occurring biofilms i.e., aquatic systems and industrial settings, but also for some commensal human biofilms i.e., the mouth microbiota. However, the presence of mixed-species biofilms in chronic infections is most often an assumption based on culture-based methods and/or by means of molecular approaches, such as PCR and sequencing performed from homogenized bulk tissue samples. These methods disregard the spatial organization of the bacterial community and thus valuable information on biofilm aggregate composition, spatial organization, and possible interactions between different species is lost. Hitherto, only few studies have made visual in situ presentations of mixed-species biofilms in chronic infections, which is pivotal for the description of bacterial composition, spatial distribution, and interspecies interaction on the microscale. In order for bacteria to interact (synergism, commensalism, mutualism, competition, etc.) they need to be in close proximity to each other on the scale where they can affect e.g., solute concentrations. We argue that visual proof of mixed species biofilms in chronic infections is scarce compared to what is seen in e.g., environmental biofilms and call for a debate on the importance of mixed-species biofilm in chronic infections.
Collapse
Affiliation(s)
- Lasse Kvich
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Mette Burmølle
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mads Lichtenberg
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Middelveen MJ, Martinez RM, Fesler MC, Sapi E, Burke J, Shah JS, Nicolaus C, Stricker RB. Classification and Staging of Morgellons Disease: Lessons from Syphilis. Clin Cosmet Investig Dermatol 2020; 13:145-164. [PMID: 32104041 PMCID: PMC7012249 DOI: 10.2147/ccid.s239840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Morgellons disease (MD) is a contested dermopathy that is associated with Borrelia spirochetal infection. A simple classification system was previously established to help validate the disease based on clinical features (classes I-IV). METHODS Drawing on historical and pathological parallels with syphilis, we formulated a more detailed staging system based on clinical features as well as severity of skin lesions and corresponding histopathological infection patterns, as determined by anti-Borrelia immunohistochemical staining. RESULTS Clinical classes I-IV of MD are further categorized as mild, moderate and severe, or stages A, B and C, respectively, based on histopathological findings. Stage A lesions demonstrated little or no immune infiltrates and little or no disorganization of cells; macrophages were not present, and hemorrhage was negligible. Extracellular isolated spirochetes and intracellular staining of keratinocytes in the lower epidermis was occasionally seen. Stage C lesions demonstrated positive staining of keratinocytes in the stratum basale and stratum spinosum and positive intracellular staining of macrophages for Borrelia. Aggregate Borrelia colonies were frequently encountered, hemorrhage was frequent, and intracellularly stained fibroblasts were occasionally seen. Stage B lesions demonstrated a pattern intermediate between Stages A and C. CONCLUSION The enhanced staging system provides objective criteria to assess the severity of dermopathy in MD. Further studies are needed to determine the optimal treatment for MD based on this staging system related to Borrelia infection.
Collapse
Affiliation(s)
| | | | | | - Eva Sapi
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT, USA
| | | | | | | | | |
Collapse
|