1
|
Zong Z, Yang M, Ley J, Butts CT, Markopoulou A. Privacy by Projection: Federated Population Density Estimation by Projecting on Random Features. PROCEEDINGS ON PRIVACY ENHANCING TECHNOLOGIES. PRIVACY ENHANCING TECHNOLOGIES SYMPOSIUM 2023; 2023:309-324. [PMID: 38259959 PMCID: PMC10803056 DOI: 10.56553/popets-2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We consider the problem of population density estimation based on location data crowdsourced from mobile devices, using kernel density estimation (KDE). In a conventional, centralized setting, KDE requires mobile users to upload their location data to a server, thus raising privacy concerns. Here, we propose a Federated KDE framework for estimating the user population density, which not only keeps location data on the devices but also provides probabilistic privacy guarantees against a malicious server that tries to infer users' location. Our approach Federated random Fourier feature (RFF) KDE leverages a random feature representation of the KDE solution, in which each user's information is irreversibly projected onto a small number of spatially delocalized basis functions, making precise localization impossible while still allowing population density estimation. We evaluate our method on both synthetic and real-world datasets, and we show that it achieves a better utility (estimation performance)-vs-privacy (distance between inferred and true locations) tradeoff, compared to state-of-the-art baselines (e.g., GeoInd). We also vary the number of basis functions per user, to further improve the privacy-utility trade-off, and we provide analytical bounds on localization as a function of areal unit size and kernel bandwidth.
Collapse
Affiliation(s)
- Zixiao Zong
- University of California, Irvine, Irvine, CA, USA
| | - Mengwei Yang
- University of California, Irvine, Irvine, CA, USA
| | - Justin Ley
- University of California, Irvine, Irvine, CA, USA
| | | | | |
Collapse
|
2
|
Del-Águila-Mejía J, García-García D, Rojas-Benedicto A, Rosillo N, Guerrero-Vadillo M, Peñuelas M, Ramis R, Gómez-Barroso D, Donado-Campos JDM. Epidemic Diffusion Network of Spain: A Mobility Model to Characterize the Transmission Routes of Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4356. [PMID: 36901366 PMCID: PMC10001675 DOI: 10.3390/ijerph20054356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Human mobility drives the geographical diffusion of infectious diseases at different scales, but few studies focus on mobility itself. Using publicly available data from Spain, we define a Mobility Matrix that captures constant flows between provinces by using a distance-like measure of effective distance to build a network model with the 52 provinces and 135 relevant edges. Madrid, Valladolid and Araba/Álaba are the most relevant nodes in terms of degree and strength. The shortest routes (most likely path between two points) between all provinces are calculated. A total of 7 mobility communities were found with a modularity of 63%, and a relationship was established with a cumulative incidence of COVID-19 in 14 days (CI14) during the study period. In conclusion, mobility patterns in Spain are governed by a small number of high-flow connections that remain constant in time and seem unaffected by seasonality or restrictions. Most of the travels happen within communities that do not completely represent political borders, and a wave-like spreading pattern with occasional long-distance jumps (small-world properties) can be identified. This information can be incorporated into preparedness and response plans targeting locations that are at risk of contagion preventively, underscoring the importance of coordination between administrations when addressing health emergencies.
Collapse
Affiliation(s)
- Javier Del-Águila-Mejía
- Departamento de Medicina Preventiva y Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid. C. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Centro Nacional de Epidemiología, Instituto de Salud Carlos IIII, Calle de Melchor Fernández Almagro 5, 28029 Madrid, Spain
- Servicio de Medicina Preventiva, Hospital Universitario de Móstoles, Calle Río Júcar s/n, 28935 Móstoles, Spain
| | - David García-García
- Centro Nacional de Epidemiología, Instituto de Salud Carlos IIII, Calle de Melchor Fernández Almagro 5, 28029 Madrid, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Calle Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ayelén Rojas-Benedicto
- Centro Nacional de Epidemiología, Instituto de Salud Carlos IIII, Calle de Melchor Fernández Almagro 5, 28029 Madrid, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Calle Monforte de Lemos 3-5, 28029 Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), Calle de Bravo Murillo 38, 28015 Madrid, Spain
| | - Nicolás Rosillo
- Servicio de Medicina Preventiva, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - María Guerrero-Vadillo
- Centro Nacional de Epidemiología, Instituto de Salud Carlos IIII, Calle de Melchor Fernández Almagro 5, 28029 Madrid, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Calle Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Marina Peñuelas
- Centro Nacional de Epidemiología, Instituto de Salud Carlos IIII, Calle de Melchor Fernández Almagro 5, 28029 Madrid, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Calle Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Rebeca Ramis
- Centro Nacional de Epidemiología, Instituto de Salud Carlos IIII, Calle de Melchor Fernández Almagro 5, 28029 Madrid, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Calle Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Diana Gómez-Barroso
- Centro Nacional de Epidemiología, Instituto de Salud Carlos IIII, Calle de Melchor Fernández Almagro 5, 28029 Madrid, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Calle Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Juan de Mata Donado-Campos
- Departamento de Medicina Preventiva y Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid. C. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Calle Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
3
|
Diagnostic Policies Optimization for Chronic Diseases Based on POMDP Model. Healthcare (Basel) 2022; 10:healthcare10020283. [PMID: 35206897 PMCID: PMC8872177 DOI: 10.3390/healthcare10020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023] Open
Abstract
During the process of disease diagnosis, overdiagnosis can lead to potential health loss and unnecessary anxiety for patients as well as increased medical costs, while underdiagnosis can result in patients not being treated on time. To deal with these problems, we construct a partially observable Markov decision process (POMDP) model of chronic diseases to study optimal diagnostic policies, which takes into account individual characteristics of patients. The objective of our model is to maximize a patient’s total expected quality-adjusted life years (QALYs). We also derive some structural properties, including the existence of the diagnostic threshold and the optimal diagnosis age for chronic diseases. The resulting optimization is applied to the management of coronary heart disease (CHD). Based on clinical data, we validate our model, demonstrate how the quantitative tool can provide actionable insights for physicians and decision makers in health-related fields, and compare optimal policies with actual clinical decisions. The results indicate that the diagnostic threshold first decreases and then increases as the patient’s age increases, which contradicts the intuitive non-decreasing thresholds. Moreover, diagnostic thresholds were higher for women than for men, especially at younger ages.
Collapse
|