1
|
Ahmed N, Zhang B, Deng L, Bozdar B, Li J, Chachar S, Chachar Z, Jahan I, Talpur A, Gishkori MS, Hayat F, Tu P. Advancing horizons in vegetable cultivation: a journey from ageold practices to high-tech greenhouse cultivation-a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1357153. [PMID: 38685958 PMCID: PMC11057267 DOI: 10.3389/fpls.2024.1357153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Vegetable cultivation stands as a pivotal element in the agricultural transformation illustrating a complex interplay between technological advancements, evolving environmental perspectives, and the growing global demand for food. This comprehensive review delves into the broad spectrum of developments in modern vegetable cultivation practices. Rooted in historical traditions, our exploration commences with conventional cultivation methods and traces the progression toward contemporary practices emphasizing the critical shifts that have refined techniques and outcomes. A significant focus is placed on the evolution of seed selection and quality assessment methods underlining the growing importance of seed treatments in enhancing both germination and plant growth. Transitioning from seeds to the soil, we investigate the transformative journey from traditional soil-based cultivation to the adoption of soilless cultures and the utilization of sustainable substrates like biochar and coir. The review also examines modern environmental controls highlighting the use of advanced greenhouse technologies and artificial intelligence in optimizing plant growth conditions. We underscore the increasing sophistication in water management strategies from advanced irrigation systems to intelligent moisture sensing. Additionally, this paper discusses the intricate aspects of precision fertilization, integrated pest management, and the expanding influence of plant growth regulators in vegetable cultivation. A special segment is dedicated to technological innovations, such as the integration of drones, robots, and state-of-the-art digital monitoring systems, in the cultivation process. While acknowledging these advancements, the review also realistically addresses the challenges and economic considerations involved in adopting cutting-edge technologies. In summary, this review not only provides a comprehensive guide to the current state of vegetable cultivation but also serves as a forward-looking reference emphasizing the critical role of continuous research and the anticipation of future developments in this field.
Collapse
Affiliation(s)
- Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, China
| | - Lansheng Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Bilquees Bozdar
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Juan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Itrat Jahan
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Afifa Talpur
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | | | - Faisal Hayat
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Méndez-Guzmán HA, Padilla-Medina JA, Martínez-Nolasco C, Martinez-Nolasco JJ, Barranco-Gutiérrez AI, Contreras-Medina LM, Leon-Rodriguez M. IoT-Based Monitoring System Applied to Aeroponics Greenhouse. SENSORS 2022; 22:s22155646. [PMID: 35957199 PMCID: PMC9371135 DOI: 10.3390/s22155646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022]
Abstract
The inclusion of the Internet of Things (IoT) in greenhouses has become a fundamental tool for improving cultivation systems, offering information relevant to the greenhouse manager for decision making in search of optimum yield. This article presents a monitoring system applied to an aeroponic greenhouse based on an IoT architecture that provides user information on the status of the climatic variables and the appearance of the crop in addition to managing the irrigation timing and the frequency of visual inspection using an application developed for Android mobile devices called Aeroponics Monitor. The proposed IoT architecture consists of four layers: a device layer, fog layer, cloud layer and application layer. Once the information about the monitored variables is obtained by the sensors of the device layer, the fog layer processes it and transfers it to the Thingspeak and Firebase servers. In the cloud layer, Thingspeak analyzes the information from the variables monitored in the greenhouse through its IoT analytic tools to generate historical data and visualizations of their behavior, as well as an analysis of the system’s operating status. Firebase, on the other hand, is used as a database to store the results of the processing of the images taken in the fog layer for the supervision of the leaves and roots. The results of the analysis of the information of the monitored variables and of the processing of the images are presented in the developed app, with the objective of visualizing the state of the crop and to know the function of the monitoring system in the event of a possible lack of electricity or a service line failure in the fog layer and to avoid the loss of information. With the information about the temperature of the plant leaf and the relative humidity inside the greenhouse, the vapor pressure deficit (VPD) in the cloud layer is calculated; the VPD values are available on the Thingspeak server and in the developed app. Additionally, an analysis of the VPD is presented that demonstrates a water deficiency from the transplanting of the seedling to the cultivation chamber. The IoT architecture presented in this paper represents a potential tool for the study of aeroponic farming systems through IoT-assisted monitoring.
Collapse
Affiliation(s)
- Hugo A. Méndez-Guzmán
- Doctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Celaya 38010, Mexico; (H.A.M.-G.); (C.M.-N.)
| | - José A. Padilla-Medina
- Departamento de Ingeniería Electrónica, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Celaya 38010, Mexico; (J.A.P.-M.); (A.I.B.-G.)
| | - Coral Martínez-Nolasco
- Doctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Celaya 38010, Mexico; (H.A.M.-G.); (C.M.-N.)
| | - Juan J. Martinez-Nolasco
- Departamento de Ingeniería Mecatrónica, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Celaya 38010, Mexico
- Correspondence:
| | - Alejandro I. Barranco-Gutiérrez
- Departamento de Ingeniería Electrónica, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Celaya 38010, Mexico; (J.A.P.-M.); (A.I.B.-G.)
| | - Luis M. Contreras-Medina
- The Biosystems Engineering Group, Faculty of Engineering, Autonomous University of Queretaro—Campus Amazcala, El Marques, Querétaro 76140, Mexico;
| | - Miguel Leon-Rodriguez
- Departamento de Ingeniería Robótica, Universidad Politécnica de Guanajuato, Campus Cortázar, Guanajuato 38496, Mexico;
| |
Collapse
|
3
|
Rupawalla Z, Shaw L, Ross IL, Schmidt S, Hankamer B, Wolf J. Germination screen for microalgae-generated plant growth biostimulants. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Non-Invasive Monitoring of the Thermal and Morphometric Characteristics of Lettuce Grown in an Aeroponic System through Multispectral Image System. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aeroponics is a soilless cultivation technology integrating plant nutrition, physiology, ecological environment, agricultural automation and horticulture. One of the soilless advantages is that a non-invasive observation of the root system growth development is possible. This paper presents a vegetative growth evaluation of lettuce plants in an aeroponic chamber, where root and leaf development parameters were measured in three lettuce crops through plant images captured in the visible (VIS), near infrared (NIR) and far infrared (IR) spectra. A total of ninety lettuce plants was transplanted for this research, thirty for each experimental crop. The three lettuce crops were grown for thirty days in an aeroponic growth plant chamber inside a greenhouse under favorable conditions. The morphometric and thermal parameters of the lettuce roots (perimeter, area, length and average temperature) and leaves (perimeter, area and average temperature) were evaluated for each crop along ten image-capturing sessions through an implemented multispectral vision system. The average values of the root and leaf morphometric parameters obtained with the implemented imaging system along the lettuce growing period were statistically analyzed with Tukey testing. The obtained analysis results show no significant difference for a value of p ≤ 0.05 in 86.67%. Hence, the morphometric parameters can be used to characterize the vegetative lettuce growth in aeroponic crops. On the other hand, a correlation analysis was conducted between the thermal parameters computed with the root and leaf thermal image processing and the measured ambient temperature. The results were: R = 0.945 for correlation between ambient and leaf temperature, R = 0.963 for correlation between ambient and root temperature and R = 0.977 for leaf and root temperature. According to these results, the plant temperature is highly correlated with the ambient temperature in an aeroponic crop. The obtained study results suggest that multispectral image processing is a useful non-invasive tool to estimate the vegetative root and leaf growth parameters of aeroponic lettuce plants in a greenhouse.
Collapse
|
5
|
Can Precise Irrigation Support the Sustainability of Protected Cultivation? A Life-Cycle Assessment and Life-Cycle Cost Analysis. WATER 2021. [DOI: 10.3390/w14010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To address sustainability challenges, agricultural advances in Mediterranean horticultural systems will necessitate a paradigmatic shift toward smart technologies, the impacts of which from a life cycle perspective have to be explored. Using life cycle thinking approaches, this study evaluated the synergistic environmental and economic performance of precise irrigation in greenhouse Zucchini production following a cradle-to-farm gate perspective. A cloud-based decision support system and a sensor-based irrigation management system (both referred to as “smart irrigation” approaches) were analyzed and compared to the farmer’s experience-based irrigation. The potential environmental indicators were quantified using life cycle assessment (LCA) with the ReCiPe 2016 method. For the economic analysis, life cycle costing (LCC) was applied, accounting not only for private product costs but also for so-called “hidden” or “external” environmental costs by monetizing LCA results. Smart irrigation practices exhibited similar performance, consuming on average 38.2% less irrigation water and energy, thus generating environmental benefits ranging from 0.17% to 62%. Single score results indicated that life cycle environmental benefits are up to 13% per ton of product. The cost-benefit analysis results showed that even though the implementation of smart irrigation imposes upfront investment costs, these costs are offset by the benefits to water and energy conservation associated with these practices. The reduction of investment costs and higher water costs in future, and lower internal rate of return can further enhance the profitability of smart irrigation strategies. The overall results of this study highlight that smart and innovative irrigation practices can enhance water-energy efficiency, gaining an economic advantage while also reducing the environmental burdens of greenhouse cultivation in a Mediterranean context.
Collapse
|
6
|
Evaluation of Lettuce (Lactuca sativa L.) Production under Hydroponic System: Nutrient Solution Derived from Fish Waste vs. Inorganic Nutrient Solution. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7090292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Organic fresh products are appreciated and are gaining a good reputation regarding human health and environmental concerns. Despite the fact that hydroponics are commonly used in vegetable production, growers are looking for sustainable cultivation systems. Therefore, the objective of this study was to investigate the effect of using an organic-based nutrient solution (NS) derived from fish waste in a hydroponic system on the vegetative growth and production of lettuce compared to a conventional inorganic NS. Plant growth, yield, physiological and nutrient content parameters were determined. The results revealed that the overall growth and fresh biomass of the organic NS grown lettuce were relatively lower than those of the inorganic NS. Stomata density was significantly higher in inorganic grown lettuce compared to the organic one. However, the total chlorophyll, carotene, phenolic compounds, and flavonoid contents, as well as antioxidant activity were significantly higher in lettuce grown in organic NS compared to the inorganic one. Leaf nutrient content at harvest was significantly impacted by the type of used fertilizer. Based on these findings, in hydroponic system, organic liquid fertilizer derived from fish waste (as an alternative NS source) requires further improvements to achieve optimal growth and yield comparable to that of conventional inorganic NS.
Collapse
|
7
|
Identification of Plant Growth Promoting Rhizobacteria That Improve the Performance of Greenhouse-Grown Petunias under Low Fertility Conditions. PLANTS 2021; 10:plants10071410. [PMID: 34371613 PMCID: PMC8309264 DOI: 10.3390/plants10071410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Abstract
The production of greenhouse ornamentals relies on high fertilizer inputs to meet scheduling deadlines and quality standards, but overfertilization has negative environmental impacts. The goals of this study were to identify plant-growth-promoting rhizobacteria (PGPR) that can improve greenhouse ornamental crop performance with reduced fertilizer inputs, and to identify the best measurements of plant performance for assessing the beneficial impact of PGPR on ornamentals. A high-throughput greenhouse trial was used to identify 14 PGPR isolates that improved the flower/bud number and shoot dry weight of Petunia × hybrida ‘Picobella Blue’ grown under low fertility conditions in peat-based media. These 14 PGPR were then applied to petunias grown under low fertility conditions (25 mg L−1 N). PGPR-treated plants were compared to negative (untreated at 25 mg L−1 N) and positive (untreated at 50, 75, 100, and 150 mg L−1 N) controls. Multiple parameters were measured in the categories of flowering, vegetative growth, and vegetative quality to determine the best measurements to assess improvements in ornamental plant performance. Caballeronia zhejiangensis C7B12-treated plants performed better in almost all parameters and were comparable to untreated plants fertilized with 50 mg L−1 N. Genomic analysis identified genes that were potentially involved in plant growth promotion. Our study identified potential PGPR that can be used as biostimulants to produce high-quality greenhouse ornamentals with lower fertilizer inputs.
Collapse
|