1
|
Li YH, Liu C, Xu RZ, Fan YP, Wang JY, Li H, Zhang J, Zhang HJ, Wang JJ, Li DK. Genome-wide analysis of long non-coding RNAs involved in the fruit development process of Cucumis melo Baogua. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1475-1491. [PMID: 39310708 PMCID: PMC11413265 DOI: 10.1007/s12298-024-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Melon (Cucumis melo L.) is a horticultural crop that is planted globally. Cucumis melo L. cv. Baogua is a typical melon that is suitable for studying fruit development because of its ability to adapt to different climatic conditions. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs longer than 200 nucleotides, which play important roles in a wide range of biological processes by regulating gene expression. In this study, the transcriptome of the Baogua melon was sequenced at three stages of the process of fruit development (14 days, 21 days, and 28 days) to study the role of lncRNAs in fruit development. The cis and trans lncRNAs were subsequently predicted and identified to determine their target genes. Notably, 1716 high-confidence lncRNAs were obtained in the three groups. A subsequent differential expression analysis of the lncRNAs between the three groups revealed 388 differentially expressed lncRNAs. A total of 11 genes were analyzed further to validate the transcriptome sequencing results. Interestingly, the MELO3C001376.2 and MSTRG.571.2 genes were found to be significantly (P < 0.05) downregulated in the fruits. This study provides a basis to better understand the functions and regulatory mechanisms of lncRNAs during the development of melon fruit.
Collapse
Affiliation(s)
- Ya-hui Li
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Chun Liu
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Run-zhe Xu
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Yu-peng Fan
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Ji-yuan Wang
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Hu Li
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Jian Zhang
- Institute of Vegetables, Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction By Ministry and Province), Anhui Academy of Agricultural Sciences, Huaibei Normal University, Nongke South Road 40, Hefei, 230031 Anhui Province People’s Republic of China
| | - Hui-jun Zhang
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Jing-jing Wang
- Huinan Academy of Agricultural Sciences, Huainan, 232001 Anhui Province People’s Republic of China
| | - Da-kui Li
- Huinan Academy of Agricultural Sciences, Huainan, 232001 Anhui Province People’s Republic of China
| |
Collapse
|
2
|
Zhao X, Li F, Ali M, Li X, Fu X, Zhang X. Emerging roles and mechanisms of lncRNAs in fruit and vegetables. HORTICULTURE RESEARCH 2024; 11:uhae046. [PMID: 38706580 PMCID: PMC11069430 DOI: 10.1093/hr/uhae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 05/07/2024]
Abstract
With the development of genome sequencing technologies, many long non-coding RNAs (lncRNAs) have been identified in fruit and vegetables. lncRNAs are primarily transcribed and spliced by RNA polymerase II (Pol II) or plant-specific Pol IV/V, and exhibit limited evolutionary conservation. lncRNAs intricately regulate various aspects of fruit and vegetables, including pigment accumulation, reproductive tissue development, fruit ripening, and responses to biotic and abiotic stresses, through diverse mechanisms such as gene expression modulation, interaction with hormones and transcription factors, microRNA regulation, and involvement in alternative splicing. This review presents a comprehensive overview of lncRNA classification, basic characteristics, and, most importantly, recent advances in understanding their functions and regulatory mechanisms.
Collapse
Affiliation(s)
- Xiuming Zhao
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Fujun Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Maratab Ali
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xiaoan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xiaodong Fu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xinhua Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| |
Collapse
|
3
|
Wang B, Ji M, Fang H, Gu H, Mehari TG, Han J, Feng W, Huo X, Zhang J, Chen Y, Zhang J, Ditta A, Khan MKR, Paterson AH, Chee PW, Wang K. An analysis of lncRNAs related to fiber quality and the discovery of their target genes in a Gossypium hirsutum line with Gossypium mustelinum introgression. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:40. [PMID: 38296887 DOI: 10.1007/s00122-024-04541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
KEY MESSAGE Analysis of fiber quality lncRNAs and their target genes from a pair of Gossypium mustelinum near-isogenic lines provide new prospects for improving the fiber quality of Upland cotton. Long noncoding RNAs (lncRNAs) are an important part of genome transcription and play roles in a wide range of biological processes in plants. In this research, a pair of near-isogenic cotton lines, namely, a Gossypium mustelinum introgression line (IL9) with outstanding fiber quality and its recurrent Upland cotton parent (PD94042), were used as the experimental materials. Cotton fibers were selected for lncRNA sequencing at 17 and 21 days post-anthesis. A total of 2693 differentially expressed genes were identified. In total, 5841 lncRNAs were ultimately screened, from which 163 differentially expressed lncRNAs were identified. Target genes of the lncRNAs were predicted by two different methods: cis and trans. Some of the target genes were related to cell components, membrane components, plant hormone signal transduction and catalytic metabolism, and the results indicated that there might also be important effects on the development of fiber. Four differentially expressed target genes related to fiber quality (Gomus.D05G015100, Gomus.A05G281300, Gomus.A12G023400 and Gomus.A10G226800) were screened through gene function annotation, and the functions of these four genes were verified through virus-induced gene silencing (VIGS). Compared to the negative controls, plants in which any of these four genes were silenced showed significant reductions in fiber strength. In addition, the plants in which the Gomus.A12G023400 gene was silenced showed a significant reduction in fiber uniformity, whereas the plants in which Gomus.A05G281300 was silenced showed a significant increase in fiber fineness as measured via micronaire. Our results showed that these genes play different roles during fiber development, impacting fiber quality.
Collapse
Affiliation(s)
- Baohua Wang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
| | - Meijun Ji
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Haijing Gu
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | | | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Wenxiang Feng
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xuehan Huo
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Allah Ditta
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan
| | - Muhammad K R Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Peng W Chee
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, 31793, USA.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
4
|
Xiao Q, Lin Y, Li H, Chen Y, Wei W, Li P, Chen L. Transcriptome sequencing reveals the differentially expressed lncRNAs and mRNAs in response to cold acclimation and cold stress in Pomacea canaliculata. BMC Genomics 2022; 23:382. [PMID: 35590244 PMCID: PMC9121591 DOI: 10.1186/s12864-022-08622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background Tolerance of low temperature has a significant impact on survival and expansion of invasive snail Pomacea canalicuata. Cold acclimation can enhance cold tolerance of Pomacea canalicuata. To elucidate the molecular mechanism of P. canaliculata’s responses to cold acclimation and cold stress, a high-throughput transcriptome analysis of P. canaliculata was performed, and gene expression following artificial cold acclimation and then cold stress at 0 °C for 24 h was compared using RNA sequencing. Results Using the Illumina platform, we obtained 151.59 G subreads. A total of 5,416 novel lncRNAs were identified, and 3166 differentially expressed mRNAs and 211 differentially expressed lncRNAs were screened with stringent thresholds. The potential antisense, cis and trans targets of lncRNAs were predicted. Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that many target genes were involved in proteasome, linoleic acid metabolism and retinol metabolism under cold acclimation. The lncRNA of P. canaliculata could participate in cold acclimation by regulating the expression of E3 ubiquitin protein ligase, 26S proteasome non-ATPase dependent regulation subunit, glutathione S-transferase, sodium/glucose cotransporter and cytochrome P450. Conclusions These results broaden our understanding of cold acclimation and cold stress associated lncRNAs and mRNAs, and provide new insights into lncRNA mediated regulation of P. canaliculata cold acclimation and cold stress response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08622-5.
Collapse
Affiliation(s)
- Qi Xiao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.,Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Youfu Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Chen
- College of Life Sciences, Chemistry and Chemical Engineering, Jiangsu Second Normal University, Nanjing, 210013, China
| | - Wei Wei
- College of Life Sciences, Chemistry and Chemical Engineering, Jiangsu Second Normal University, Nanjing, 210013, China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Lian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|