1
|
Fatima S, Khan MO, Iqbal N, Iqbal MM, Qamar H, Imtiaz M, Hundleby P, Wei Z, Ahmad N. Studying Salt-Induced Shifts in Gene Expression Patterns of Glucosinolate Transporters and Glucosinolate Accumulation in Two Contrasting Brassica Species. Metabolites 2024; 14:179. [PMID: 38668307 PMCID: PMC11052333 DOI: 10.3390/metabo14040179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Brassica crops are well known for the accumulation of glucosinolates-secondary metabolites crucial for plants' adaptation to various stresses. Glucosinolates also functioning as defence compounds pose challenges to food quality due to their goitrogenic properties. Their disruption leaves plants susceptible to insect pests and diseases. Hence, a targeted reduction in seed glucosinolate content is of paramount importance to increase food acceptance. GLUCOSINOLATE TRANSPORTERS (GTRs) present a promising avenue for selectively reducing glucosinolate concentrations in seeds while preserving biosynthesis elsewhere. In this study, 54 putative GTR protein sequences found in Brassica were retrieved, employing Arabidopsis GTR1 and GTR2 templates. Comprehensive bioinformatics analyses, encompassing gene structure organization, domain analysis, motif assessments, promoter analysis, and cis-regulatory elements, affirmed the existence of transporter domains and stress-related regulatory elements. Phylogenetic analysis revealed patterns of conservation and divergence across species. Glucosinolates have been shown to increase under stress conditions, indicating a potential role in stress response. To elucidate the role of GTRs in glucosinolate transportation under NaCl stress in two distinct Brassica species, B. juncea and B. napus, plants were subjected to 0, 100, or 200 mM NaCl. Based on the literature, key GTR genes were chosen and their expression across various plant parts was assessed. Both species displayed divergent trends in their biochemical profiles as well as glucosinolate contents under elevated salt stress conditions. Statistical modelling identified significant contributors to glucosinolate variations, guiding the development of targeted breeding strategies for low-glucosinolate varieties. Notably, GTR2A2 exhibited pronounced expressions in stems, contributing approximately 52% to glucosinolate content variance, while GTR2B1/C2 displayed significant expression in flowers. Additionally, GTR2A1 and GTR1A2/B1 demonstrated noteworthy expression in roots. This study enhances our understanding of glucosinolate regulation under stress conditions, offering avenues to improve Brassica crop quality and resilience.
Collapse
Affiliation(s)
- Samia Fatima
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (S.F.); (M.O.K.); (N.I.); (M.M.I.); (M.I.)
| | - Muhammad Omar Khan
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (S.F.); (M.O.K.); (N.I.); (M.M.I.); (M.I.)
| | - Nadia Iqbal
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (S.F.); (M.O.K.); (N.I.); (M.M.I.); (M.I.)
| | - Muhammad Mudassar Iqbal
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (S.F.); (M.O.K.); (N.I.); (M.M.I.); (M.I.)
| | - Huma Qamar
- Oilseeds Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan;
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Muhammad Imtiaz
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (S.F.); (M.O.K.); (N.I.); (M.M.I.); (M.I.)
| | - Penny Hundleby
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK;
| | - Zhengyi Wei
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (S.F.); (M.O.K.); (N.I.); (M.M.I.); (M.I.)
| |
Collapse
|
2
|
Arsene MMJ, Viktorovna PI, Alla M, Mariya M, Davares AKL, Carime BZ, Anatolievna GO, Vyacheslavovna YN, Vladimirovna ZA, Andreevna SL, Aleksandrovna VE, Alekseevich BL, Nikolaïevna BM, Parfait K, Andrey V. Antimicrobial activity of phytofabricated silver nanoparticles using Carica papaya L. against Gram-negative bacteria. Vet World 2023; 16:1301-1311. [PMID: 37577189 PMCID: PMC10421558 DOI: 10.14202/vetworld.2023.1301-1311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/17/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Antibiotic resistance, especially in Gram-negative bacteria, is a major public health risk affecting all industries requiring the use of antibiotics, including agriculture and animal breeding. This study aimed to use papaya extracts to synthesize silver nanoparticles (AgNPs) and evaluate their antimicrobial activity against various Gram-negative bacteria. Materials and Methods Silver nanoparticles were synthesized from the aqueous extracts of papaya seed, root, and bark, with AgNO3 used as a reducing agent. The phytofabricated AgNPs were analyzed by ultraviolet-visible absorbance, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and photon cross-correlation spectroscopy (PCCS). The disc-diffusion method was used to perform antibacterial analysis, and the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations were determined. We also investigated the antibiofilm activity of AgNPs and attempted to elucidate the potential mechanism of action on Escherichia coli ATCC 25922. Results Phytofabrication of AgNPs was successful with papaya root (PR-AgNPs) and papaya seed (PS-AgNPs), but not with papaya bark. Silver nanoparticles using papaya root and PS-AgNPs were both cubic and showed maximum absorbances of 2.6 and 0.3 AUs at 411.6 and 416.8 nm wavelengths and average hydrodynamic diameters X50 of 59.46 ± 7.03 and 66.57 ± 8.89 nm, respectively. The Ag in both AgNPs was confirmed by X-ray fluorescence by a distinctive peak in the spectrum at the silver Kα line of 22.105 keV. Both AgNPs exhibited broad-spectrum antimicrobial and antibiofilm activity against all Gram-negative bacteria, and PR-AgNPs were slightly better than AgNPs-PS. The MIC ranged from 16 μg/mL-128 μg/mL and 16 μg/mL-64 μg/mL, respectively, for PS-AgNPs and PR-AgNPs. The elucidation of the mechanism of action revealed interference with E. coli ATCC 25922 growth kinetics and inhibition of H+-ATPase proton pumps. Conclusion Papaya seed and root extracts were efficient reducing agents for the biogenic synthesis of AgNPs, with noteworthy antibacterial and antibiofilm activities. Future studies should be conducted to identify the phytochemicals and the mechanism involved in AgNPs synthesis.
Collapse
Affiliation(s)
- Mbarga Manga Joseph Arsene
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Medical Institute RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Podoprigora Irina Viktorovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Medical Institute RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Marukhlenko Alla
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Morozova Mariya
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Anyutoulou Kitio Linda Davares
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Bassa Zacharie Carime
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Gizinger Oksana Anatolievna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Yashina Natalya Vyacheslavovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Zhigunova Anna Vladimirovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Smolyakova Larissa Andreevna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Vasilieva Elena Aleksandrovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Butusov Leonid Alekseevich
- Institute of Innovative Engineering Technologies, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Borekhova Marina Nikolaïevna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Kezimana Parfait
- Department of Agrobiotechnology, Agrarian Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Vodyashkin Andrey
- Institute of Biochemical Technology and Nanotechnology. RUDN University named after Patrice Lumumba, Moscow, Russia
| |
Collapse
|
3
|
Huang S, Wang L, Wang Z, Yang G, Xiang X, An Y, Kan J. Multiomics strategy reveals the accumulation and biosynthesis of bitter components in Zanthoxylum schinifolium Sieb. et Zucc. Food Res Int 2022; 162:111964. [DOI: 10.1016/j.foodres.2022.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/30/2022]
|
4
|
Zeng Z, Wang J, Wen X, Wang Y, Li X, Liu D, Geng F. Metabolomic analysis provides insights into the mechanism of color and taste changes in Dictyophora indusiata fruiting bodies under different drying processes. Food Res Int 2022; 162:112090. [PMID: 36461398 DOI: 10.1016/j.foodres.2022.112090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
In this study, we systematically assessed how the morphology and texture of edible fruiting bodies of D. indusiata (EFD) varied under three drying techniques: vacuum freeze drying (FD), vacuum drying (VD), and hot air drying (HD). It was discovered that freeze-dried EFD samples (FD-EFD) had an intact microstructure, and thus, a good appearance, textural characteristics, and rehydration properties. Quantitative metabolomic analysis revealed 801 metabolites, where 236 211 metabolites were significantly different in abundance in the comparison of hot-air dried EFD samples (HD-EFD) versus FD-EFD and vacuum-dried EFD samples (VD-EFD) versus FD-EFD, respectively. VD and HD significantly affected the abundance of taste-related compounds and resulted in the improvement of EFD's umami. The acidity of EFD is provided by organic acids produced through the tricarboxylic acid cycle. The browning of HD-EFD was caused by Maillard reactions, oxidative degradation of ascorbic acid, and endogenous enzymatic browning process dominated by the phenylalanine metabolic pathway. The metabolomic analysis provides new insights into changes in EFD by different drying processes.
Collapse
Affiliation(s)
- Zhen Zeng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| | - Xuefei Wen
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Yi Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xiang Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Dayu Liu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| |
Collapse
|