1
|
Wu Z, Zhao X, Yong JWH, Sehar S, Adil MF, Riaz M, Verma KK, Li M, Huo J, Yang S, Song B. Slow-release boron fertilizer improves yield and nutritional profile of Beta vulgaris L. grown in Northeast China by increasing boron supply capacity. FRONTIERS IN PLANT SCIENCE 2024; 15:1441226. [PMID: 39737381 PMCID: PMC11683845 DOI: 10.3389/fpls.2024.1441226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/31/2024] [Indexed: 01/01/2025]
Abstract
The northeastern part of China is a traditional sugar beet cultivation area where the soils are classified generally as the black and albic soil types with low boron (B) availability. Boron fertilizer can increase soil B content and significantly improve crop yield and quality. At present, the effects of slow-release B fertilizer on beet root yield and quality remain unclear. Two sugar beet varieties KWS1197 and KWS0143 were selected as the research materials; and biologically evaluated with three dosage rates of 0, 15, and 30 kg ha-1 in two soil types. Results showed that slow-release B fertilizer (30 kg ha-1) improved sugar beet net photosynthetic rate (13.6%) and transpiration rate (9.8%), as well as enhanced dry matter accumulation and the transfer to underground parts (23.1%) for higher root yield (1.4 to 9.7% in black soil and 3.5-14.2% in albic soil). Specifically, boron fertilizer greatly increased root B accumulation, as evidenced by decreasing amino N and Na contents alongside increasing surose (Pol) content. Slow-release B fertilizer increased white sugar yield by 3.5 to 35.7% in black soil and 5.8 to 20.8% in albic soil. In conclusion, applying slow-release B fertilizer is an effective strategy to increase sugar beet yield and quality in northeast China, with a recommended application rate of 30 kg ha-1. These findings established a baseline for formulating effective and futristic fertilizer for sugar beet.
Collapse
Affiliation(s)
- Zhenzhen Wu
- National Sugar Crops Improvement Center, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Sugar Beet Engineering Research Center Heilongjiang Province, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
| | - Xiaoyu Zhao
- National Sugar Crops Improvement Center, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Sugar Beet Engineering Research Center Heilongjiang Province, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Shafaque Sehar
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Meiyu Li
- National Sugar Crops Improvement Center, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Sugar Beet Engineering Research Center Heilongjiang Province, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
| | - Jialu Huo
- National Sugar Crops Improvement Center, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Sugar Beet Engineering Research Center Heilongjiang Province, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
| | - Songlin Yang
- National Sugar Crops Improvement Center, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Sugar Beet Engineering Research Center Heilongjiang Province, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
| | - Baiquan Song
- National Sugar Crops Improvement Center, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Sugar Beet Engineering Research Center Heilongjiang Province, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China
| |
Collapse
|
2
|
Chen X, Ru Y, Takahashi H, Nakazono M, Shabala S, Smith SM, Yu M. Single-cell transcriptomic analysis of pea shoot development and cell-type-specific responses to boron deficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:302-322. [PMID: 37794835 DOI: 10.1111/tpj.16487] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Understanding how nutrient stress impacts plant growth is fundamentally important to the development of approaches to improve crop production under nutrient limitation. Here we applied single-cell RNA sequencing to shoot apices of Pisum sativum grown under boron (B) deficiency. We identified up to 15 cell clusters based on the clustering of gene expression profiles and verified cell identity with cell-type-specific marker gene expression. Different cell types responded differently to B deficiency. Specifically, the expression of photosynthetic genes in mesophyll cells (MCs) was down-regulated by B deficiency, consistent with impaired photosynthetic rate. Furthermore, the down-regulation of stomatal development genes in guard cells, including homologs of MUTE and TOO MANY MOUTHS, correlated with a decrease in stomatal density under B deficiency. We also constructed the developmental trajectory of the shoot apical meristem (SAM) cells and a transcription factor interaction network. The developmental progression of SAM to MC was characterized by up-regulation of genes encoding histones and chromatin assembly and remodeling proteins including homologs of FASCIATA1 (FAS1) and SWITCH DEFECTIVE/SUCROSE NON-FERMENTABLE (SWI/SNF) complex. However, B deficiency suppressed their expression, which helps to explain impaired SAM development under B deficiency. These results represent a major advance over bulk-tissue RNA-seq analysis in which cell-type-specific responses are lost and hence important physiological responses to B deficiency are missed. The reported findings reveal strategies by which plants adapt to B deficiency thus offering breeders a set of specific targets for genetic improvement. The reported approach and resources have potential applications well beyond P. sativum species and could be applied to various legumes to improve their adaptability to multiple nutrient or abiotic stresses.
Collapse
Affiliation(s)
- Xi Chen
- Department of Horticulture, International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, 7001, Australia
- School of Biological Science, University of Western Australia, Crawley, WA, 6009, Australia
| | - Yanqi Ru
- Department of Horticulture, International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
- School of Agriculture and Environment, University of Western Australia, Crawley, WA, 6009, Australia
| | - Sergey Shabala
- Department of Horticulture, International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, 7001, Australia
- School of Biological Science, University of Western Australia, Crawley, WA, 6009, Australia
| | - Steven M Smith
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Min Yu
- Department of Horticulture, International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Agriculture and Environment, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
3
|
Arrobas M, Raimundo S, Conceição N, Moutinho-Pereira J, Correia CM, Rodrigues MÂ. On Sandy, Boron-Poor Soils, Liming Induced Severe Boron Deficiency and Drastically Reduced the Dry Matter Yield of Young Olive Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:4161. [PMID: 38140487 PMCID: PMC10748051 DOI: 10.3390/plants12244161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
In the northeast of Portugal, like in many parts of the world, most soils are acidic, which may hamper crop productivity. This study presents the findings of a factorial experiment on olive (Olea europaea L.) involving three factors: (i) soil type [schist (Sch) and granite (Gra)]; (ii) cultivars [Cobrançosa (Cob) and Arbequina (Arb)]; and (iii) fertilizer treatments [liming (CaCO3) plus magnesium (Mg) (LMg), phosphorus (P) application (+P), boron (B) application (+B), all fertilizing materials combined (Con+), and an untreated control (Con-)]. Dry matter yield (DMY) did not show significant differences between cultivars, but plants grown in schist soil exhibited significantly higher biomass compared to those in granite soil. Among the treatments, +B and Con+ resulted in the highest DMY (50.8 and 47.2 g pot-1, respectively), followed by +P (34.3 g pot-1) and Con- (28.6 g pot-1). Treatment LMg yielded significantly lower values (15.6 g pot-1) than Con-. LMg raised the pH above 7 (7.36), leading to a severe B deficiency. Although Con+ also raised the pH above 7 (7.48), it ranked among the most productive treatments for providing B. Therefore, when applying lime to B-poor sandy soils, moderate rates are advised to avoid inducing a B deficiency. Additionally, it seems prudent to apply B after lime application.
Collapse
Affiliation(s)
- Margarida Arrobas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.A.); (S.R.); (N.C.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Soraia Raimundo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.A.); (S.R.); (N.C.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Nuno Conceição
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.A.); (S.R.); (N.C.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Moutinho-Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal; (J.M.-P.); (C.M.C.)
| | - Carlos Manuel Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal; (J.M.-P.); (C.M.C.)
| | - Manuel Ângelo Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.A.); (S.R.); (N.C.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
4
|
Song X, Song B, Huo J, Liu H, Adil MF, Jia Q, Wu W, Kuerban A, Wang Y, Huang W. Effect of boron deficiency on the photosynthetic performance of sugar beet cultivars with contrasting boron efficiencies. FRONTIERS IN PLANT SCIENCE 2023; 13:1101171. [PMID: 36726677 PMCID: PMC9885099 DOI: 10.3389/fpls.2022.1101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Boron (B) deficiency severely affects the quality of sugar beet production, and the employment of nutrient-efficient varieties for cultivation is a crucial way to solve environmental and resource-based problems. However, the aspect of leaf photosynthetic performance among B-efficient sugar beet cultivars remains uncertain. The B deficient and B-sufficient treatments were conducted in the experiment using KWS1197 (B-efficient) and KWS0143 (B-inefficient) sugar beet cultivars as study materials. The objective of the present study was to determine the impacts of B deficiency on leaf phenotype, photosynthetic capacity, chloroplast structure, and photochemical efficiency of the contrasting B-efficiency sugar beet cultivars. The results indicated that the growth of sugar beet leaves were dramatically restricted, the net photosynthetic rate was significantly decreased, and the energy flux, quantum yield, and flux ratio of PSII reaction centers were adversely affected under B deficiency. Compared to the KWS0143 cultivar, the average leaf area ratio of the KWS1197 cultivar experienced less impact, and its leaf mass ratio (LMR) increased by 26.82% under B deficiency, whereas for the KWS0143 cultivar, the increase was only 2.50%. Meanwhile, the light energy capture and utilization capacity of PSII reaction centers and the proportion of absorbed light energy used for electron transfer were higher by 3.42% under B deficiency; KWS1197 cultivar managed to alleviate the photo-oxidative damage, which results from excessive absorbed energy (ABS/RC), by increasing the dissipated energy (DIo/RC). Therefore, in response to B deprivation, the KWS1197 cultivar demonstrated greater adaptability in terms of morphological indices and photosynthetic functions, which not only explains the improved performance but also renders the measured parameters as the key features for varietal selection, providing a theoretical basis for the utilization of efficient sugar beet cultivars in future.
Collapse
Affiliation(s)
- Xin Song
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Baiquan Song
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Jialu Huo
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Huajun Liu
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resources, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiue Jia
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Wenyu Wu
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Abudukadier Kuerban
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Yan Wang
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Wengong Huang
- Safety and Quality Institution of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|