1
|
Asadi A, Tavakol E, Shariati V, Hosseini Mazinani M. Unraveling the genetic basis of oil quality in olives: a comparative transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1467102. [PMID: 39411654 PMCID: PMC11473408 DOI: 10.3389/fpls.2024.1467102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Introduction The balanced fatty acid profile of olive oil not only enhances its stability but also contributes to its positive effects on health, making it a valuable dietary choice. Olive oil's high content of unsaturated fatty acids and low content of saturated fatty acids contribute to its beneficial effects on cardiovascular diseases and cancer. The quantities of these fatty acids in olive oil may fluctuate due to various factors, with genotype being a crucial determinant of the oil's quality. Methods This study investigated the genetic basis of oil quality by comparing the transcriptome of two Iranian cultivars with contrasting oil profiles: Mari, known for its high oleic acid content, and Shengeh, characterized by high linoleic acid at Jaén index four. Results and discussion Gas chromatography confirmed a significant difference in fatty acid composition between the two cultivars. Mari exhibited significantly higher oleic acid content (78.48%) compared to Shengeh (48.05%), while linoleic acid content was significantly lower in Mari (4.76%) than in Shengeh (26.69%). Using RNA sequencing at Jaén index four, we analyzed genes involved in fatty acid biosynthesis. Differential expression analysis identified 2775 genes showing statistically significant differences between the cultivars. Investigating these genes across nine fundamental pathways involved in oil quality led to the identification of 25 effective genes. Further analysis revealed 78 transcription factors and 95 transcription binding sites involved in oil quality, with BPC6 and RGA emerging as unique factors. This research provides a comprehensive understanding of the genetic and molecular mechanisms underlying oil quality in olive cultivars. The findings have practical implications for olive breeders and producers, potentially streamlining cultivar selection processes and contributing to the production of high-quality olive oil.
Collapse
Affiliation(s)
- AliAkbar Asadi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Elahe Tavakol
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Vahid Shariati
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mehdi Hosseini Mazinani
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
2
|
Sirangelo TM, Forgione I, Zelasco S, Benincasa C, Perri E, Vendramin E, Angilè F, Fanizzi FP, Sunseri F, Salimonti A, Carbone F. Combined Transcriptomic and Metabolomic Approach Revealed a Relationship between Light Control, Photoprotective Pigments, and Lipid Biosynthesis in Olives. Int J Mol Sci 2023; 24:14448. [PMID: 37833896 PMCID: PMC10572622 DOI: 10.3390/ijms241914448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Olive possesses excellent nutritional and economic values for its main healthy products. Among them, a high content of antioxidant compounds, balanced during the ripening process, are produced under genetic and environmental control, resulting in high variability among cultivars. The genes involved in these complex pathways are mainly known, but despite many studies which indicated the key role of light quality and quantity for the synthesis of many metabolites in plants, limited information on these topics is available in olive. We carried out a targeted gene expression profiling in three olive cultivars, Cellina di Nardò, Ruveia, and Salella, which were selected for their contrasting oleic acid and phenolic content. The -omics combined approach revealed a direct correlation between a higher expression of the main flavonoid genes and the high content of these metabolites in 'Cellina di Nardò'. Furthermore, it confirmed the key role of FAD2-2 in the linoleic acid biosynthesis. More interestingly, in all the comparisons, a co-regulation of genes involved in photoperception and circadian clock machinery suggests a key role of light in orchestrating the regulation of these pathways in olive. Therefore, the identified genes in our analyses might represent a useful tool to support olive breeding, although further investigations are needed.
Collapse
Affiliation(s)
- Tiziana Maria Sirangelo
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy
| | - Ivano Forgione
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy
| | - Samanta Zelasco
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy
| | - Cinzia Benincasa
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy
| | - Enzo Perri
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy
| | - Elisa Vendramin
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via di Fioranello, 52, 00134 Rome, Italy
| | - Federica Angilè
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| | - Francesco Sunseri
- Department Agraria, University Mediterranea of Reggio Calabria, Località Feo di Vito, 89124 Reggio Calabria, Italy
| | - Amelia Salimonti
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy
| | - Fabrizio Carbone
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo, 83, 87036 Rende, Italy
| |
Collapse
|
3
|
Korkmaz A. Characterization and Comparison of Extra Virgin Olive Oils of Turkish Olive Cultivars. Molecules 2023; 28:1483. [PMID: 36771149 PMCID: PMC9919864 DOI: 10.3390/molecules28031483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Extra virgin olive oils (EVOOs) obtained from five Turkish olive cultivars widely produced in the Aegean and Marmara regions were investigated based on their total antioxidant capacity (TAC), total phenolic content (TPC), pigment contents, fatty acid (FA) profiles, phenolic compounds (PC), volatile compounds (VC), and sensory properties. The results showed that all properties of EVOO samples were significantly affected by the olive cultivar used. The pigment contents in Ayvalık (9.90 mg·kg-1) and Uslu (9.00 mg·kg-1) oils were higher than the others (p < 0.05). The greatest values for oleic acid (74.13%) and TPC (350.6 mg·kg-1) were observed in Gemlik and Domat oils, respectively (p < 0.05). Edincik oil showed the maximum hydroxytyrosol content (48.022 mg·kg-1) and TAC value (515.36 mg TE·kg-1) (p < 0.05). The Edincik, Domat, and Uslu oils were significantly not different for the total content of C6 compounds derived by lipoxygenase, which are the main volatiles responsible for the typical aroma of EVOOs (p > 0.05). Domat oil also exhibited the highest scores for bitterness and pungency perceptions (p < 0.05). The fruitiness scores of the oil samples (except for Ayvalık oil) were close to each other, even if they were statistically different (p < 0.05). Principal component analysis (PCA) indicated that the Ayvalık oil was separated from the others due to its poor-quality characteristics. As a result, it can be stated that Domat olive oil has better quality than the others.
Collapse
Affiliation(s)
- Aziz Korkmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, Mardin 47200, Turkey
| |
Collapse
|