Youssif BGM, Okuda K, Kadonosono T, Salem OIAR, Hayallah AAM, Hussein MA, Kizaka-Kondoh S, Nagasawa H. Development of a hypoxia-selective near-infrared fluorescent probe for non-invasive tumor imaging.
Chem Pharm Bull (Tokyo) 2012;
60:402-7. [PMID:
22382424 DOI:
10.1248/cpb.60.402]
[Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A near-infrared fluorochrome, GPU-311, was designed, synthesized and evaluated for its application in non-invasive imaging of tumor hypoxia. Efficient synthesis was achieved by nucleophilic substitution and click chemistry ring using the bifunctional tetraethylene glycol linker 2 containing thiol and azide groups for the conjugation of the propargylated nitroimidazole 1 and the heptamethine cyanine dye 3 bearing a 2-chloro-1-cyclohexenyl ring. GPU-311 exhibited long excitation and emission wavelength (Ex/Em=785/802 nm) and a decent quantum yield (0.05). The water solubility and hydrophilicity of GPU-311 increased. After in vitro treatment of SUIT-2/HRE-Luc pancreatic cancer cells with GPU-311, a higher level of fluorescence was observed selectively in hypoxia than in normoxia. However, in vivo fluorescence imaging of a mouse xenograft model after GPU-311 administration revealed inadequate accumulation of GPU-311 in tumors due to its rapid elimination through the liver.
Collapse