1
|
Machuca-Sepúlveda J, Miranda J, Lefin N, Pedroso A, Beltrán JF, Farias JG. Current Status of Omics in Biological Quality Elements for Freshwater Biomonitoring. BIOLOGY 2023; 12:923. [PMID: 37508354 PMCID: PMC10376755 DOI: 10.3390/biology12070923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023]
Abstract
Freshwater ecosystems have been experiencing various forms of threats, mainly since the last century. The severity of this adverse scenario presents unprecedented challenges to human health, water supply, agriculture, forestry, ecological systems, and biodiversity, among other areas. Despite the progress made in various biomonitoring techniques tailored to specific countries and biotic communities, significant constraints exist, particularly in assessing and quantifying biodiversity and its interplay with detrimental factors. Incorporating modern techniques into biomonitoring methodologies presents a challenging topic with multiple perspectives and assertions. This review aims to present a comprehensive overview of the contemporary advancements in freshwater biomonitoring, specifically by utilizing omics methodologies such as genomics, metagenomics, transcriptomics, proteomics, metabolomics, and multi-omics. The present study aims to elucidate the rationale behind the imperative need for modernization in this field. This will be achieved by presenting case studies, examining the diverse range of organisms that have been studied, and evaluating the potential benefits and drawbacks associated with the utilization of these methodologies. The utilization of advanced high-throughput bioinformatics techniques represents a sophisticated approach that necessitates a significant departure from the conventional practices of contemporary freshwater biomonitoring. The significant contributions of omics techniques in the context of biological quality elements (BQEs) and their interpretations in ecological problems are crucial for biomonitoring programs. Such contributions are primarily attributed to the previously overlooked identification of interactions between different levels of biological organization and their responses, isolated and combined, to specific critical conditions.
Collapse
Affiliation(s)
- Jorge Machuca-Sepúlveda
- Doctoral Program on Natural Resources Sciences, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4780000, Chile
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandro Pedroso
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
2
|
Benthic Diatoms in River Biomonitoring—Present and Future Perspectives within the Water Framework Directive. WATER 2021. [DOI: 10.3390/w13040478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The European Water Framework Directive 2000/60/EC (WFD) has been implemented over the past 20 years, using physicochemical, biological and hydromorphological elements to assess the ecological status of surface waters. Benthic diatoms (i.e., phytobenthos) are one of the most common biological quality elements (BQEs) used in surface water monitoring and are particularly successful in detecting eutrophication, organic pollution and acidification. Herein, we reviewed their implementation in river biomonitoring for the purposes of the WFD, highlighting their advantages and disadvantages over other BQEs, and we discuss recent advances that could be applied in future biomonitoring. Until now, phytobenthos have been intercalibrated by the vast majority (26 out of 28) of EU Member States (MS) in 54% of the total water bodies assessed and was the most commonly used BQE after benthic invertebrates (85% of water bodies), followed by fish (53%), macrophytes (27%) and phytoplankton (4%). To meet the WFD demands, numerous taxonomy-based quality indices have been developed among MS, presenting, however, uncertainties possibly related to species biogeography. Recent development of different types of quality indices (trait-based, DNA sequencing and predictive modeling) could provide more accurate results in biomonitoring, but should be validated and intercalibrated among MS before their wide application in water quality assessments.
Collapse
|
3
|
Saxena A, Tiwari A, Kaushik R, Iqbal HMN, Parra-Saldívar R. Diatoms recovery from wastewater: Overview from an ecological and economic perspective. JOURNAL OF WATER PROCESS ENGINEERING 2021; 39:101705. [PMID: 38620319 PMCID: PMC7562967 DOI: 10.1016/j.jwpe.2020.101705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 02/08/2023]
Abstract
Alarming water pollution is toxic to the aquatic ecosystem leading to a sharp decline in species diversity. Diatoms have great potency to survive in contaminated water bodies, hence they can be compelling bioindicators to monitor the change in the environmental matrices effectively. Around the globe, researchers are intended to evaluate the impact of pollution on the diatoms recovery and techniques used for the assessment. The diatoms are precious for futuristic need viz. value-added products, energy generation, pharmaceuticals, and aquaculture feedstocks. All these applications led to a significant rise in diatoms research among the scientific community. This review presents different isolation practices, cultivation, and other challenges associated with the diatoms. A precise focus is given to diatoms isolation techniques from highly polluted water bodies with the main thrust towards obtaining an axenic culture to elucidate the significance of pure diatom cultures. Recovery of "jewels of the sea" from polluted water signifies the prospective ecological and economic aspects.
Collapse
Affiliation(s)
- Abhishek Saxena
- Diatoms Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, UP, 201301, India
| | - Archana Tiwari
- Diatoms Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, UP, 201301, India
| | - Rinku Kaushik
- Diatoms Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, UP, 201301, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | | |
Collapse
|
4
|
Jiang L, Xiao C, Zhao J, Jiang T, Lin J, Xu Q, Liu C, Cai W. Development of 18S rRNA gene arrays for forensic detection of diatoms. Forensic Sci Int 2020; 317:110482. [PMID: 33142211 DOI: 10.1016/j.forsciint.2020.110482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Diatom test is the most commonly used method to diagnose drowning in forensic laboratories. However, microscopic examination and identification of diatom frustules is time-consuming and requires taxonomic expertise. At present, the identification of drowning is still a challenge in forensic casework. In this study, we developed a novel diatom microarray based on the detection of specific 18S rRNA gene fragments of diatom species. The array covers 169 diatom species which were documented as commonly found in a wide range of fresh waters in China. Diatom arrays were prepared from species specific oligonucleotide probes targeting to variable regions of the 18S rRNA gene. We also developed an auxiliary sample preparation method for isolation of diatom DNA from tissues, which enabled detection of diatom species in real forensic samples as well as environmental waters. We applied the diatom arrays to analyze six drowned cases and eight environmental samples. The diatom arrays showed much better sensitivity and more consistent results than those of the conventional SEM methods. We discovered major discrepancies between results generated by the diatom arrays and the routinely used SEM based diatom tests. We verified the results of our diatom arrays by species specific PCR and Sanger sequencing and found that the currently used SEM diatom test method has a serious deficiency in sensitivity due to high loss rate of frustules in the sample preparation procedure. We anticipate that the application of diatom arrays will transform current forensic practice of diagnosing drowning deaths.
Collapse
Affiliation(s)
- Lin Jiang
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Cheng Xiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China; Guangzhou Forensic Science Institute, Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou, 510030, China
| | - Jian Zhao
- Guangzhou Forensic Science Institute, Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou, 510030, China
| | - Tao Jiang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 1037, China
| | - Jun Lin
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Quyi Xu
- Guangzhou Forensic Science Institute, Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou, 510030, China
| | - Chao Liu
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China; Guangzhou Forensic Science Institute, Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou, 510030, China
| | - Weiwen Cai
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
5
|
Scientific Symposium “Small Solution for Big Water-Related Problems: Innovative Microarrays and Small Sensors to Cope with Water Quality and Food Security”. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015. [PMCID: PMC4690928 DOI: 10.3390/ijerph121214992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Molecular detection of a potentially toxic diatom species. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:4921-41. [PMID: 25955528 PMCID: PMC4454946 DOI: 10.3390/ijerph120504921] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/24/2015] [Accepted: 04/16/2015] [Indexed: 12/27/2022]
Abstract
A few diatom species produce toxins that affect human and animal health. Among these, members of the Pseudo-nitzschia genus were the first diatoms unambiguously identified as producer of domoic acid, a neurotoxin affecting molluscan shell-fish, birds, marine mammals, and humans. Evidence exists indicating the involvement of another diatom genus, Amphora, as a potential producer of domoic acid. We present a strategy for the detection of the diatom species Amphora coffeaeformis based on the development of species-specific oligonucleotide probes and their application in microarray hybridization experiments. This approach is based on the use of two marker genes highly conserved in all diatoms, but endowed with sufficient genetic divergence to discriminate diatoms at the species level. A region of approximately 450 bp of these previously unexplored marker genes, coding for elongation factor 1-a (eEF1-a) and silicic acid transporter (SIT), was used to design oligonucleotide probes that were tested for specificity in combination with the corresponding fluorescently labeled DNA targets. The results presented in this work suggest a possible use of this DNA chip technology for the selective detection of A. coffeaeformis in environmental settings where the presence of this potential toxin producer may represent a threat to human and animal health. In addition, the same basic approach can be adapted to a wider range of diatoms for the simultaneous detection of microorganisms used as biomarkers of different water quality levels.
Collapse
|