1
|
Carandina A, Fanti G, Carminati A, Baroni M, Salafia G, Arosio B, Macchi C, Ruscica M, Vicenzi M, Carugo S, Borghi F, Spinazzè A, Cavallo DM, Tobaldini E, Montano N, Bonzini M. Indoor air pollution impacts cardiovascular autonomic control during sleep and the inflammatory profile. ENVIRONMENTAL RESEARCH 2024; 260:119783. [PMID: 39142457 DOI: 10.1016/j.envres.2024.119783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/21/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
The present study explores the modifications of cardiovascular autonomic control (CAC) during wake and sleep time and the systemic inflammatory profile associated with exposure to indoor air pollution (IAP) in a cohort of healthy subjects. Twenty healthy volunteers were enrolled. Indoor levels of fine particulate matter (PM2.5), nitrogen dioxide (NO2) and volatile organic compounds (VOCs) were monitored using a portable detector for 7 days. Together, a 7-day monitoring was performed through a wireless patch that continuously recorded electrocardiogram, respiratory activity and actigraphy. Indexes of CAC during wake and sleep time were derived from the biosignals: heart rate and low-frequency to high-frequency ratio (LF/HF), index of sympathovagal balance with higher values corresponding to a predominance of the sympathetic branch. Cyclic variation of heart rate index (CVHRI events/hour) during sleep, a proxy for the evaluation of sleep apnea, was assessed for each night. After the monitoring, blood samples were collected to assess the inflammatory profile. Regression and correlation analyses were performed. A positive association between VOC exposure and the CVHRI (Δ% = +0.2% for 1 μg/m3 VOCs, p = 0.008) was found. The CVHRI was also positively associated with LF/HF during sleep, thus higher CVHRI values corresponded to a shift of the sympathovagal balance towards a sympathetic predominance (r = 0.52; p = 0.018). NO2 exposure was positively associated with both the pro-inflammatory biomarker TREM-1 and the anti-inflammatory biomarker IL-10 (Δ% = +1.2% and Δ% = +2.4%, for 1 μg/m3 NO2; p = 0.005 and p = 0.022, respectively). The study highlights a possible causal relationship between IAP exposure and higher risk of sleep apnea events, associated with impaired CAC during sleep, and a pro-inflammatory state counterbalanced by an increased anti-inflammatory response in healthy subjects. This process may be disrupted in vulnerable populations, leading to a harmful chronic pro-inflammatory profile. Thus, IAP may emerge as a critical and often neglected risk factor for the public health that can be addressed through targeted preventive interventions.
Collapse
Affiliation(s)
- Angelica Carandina
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Fanti
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Alessio Carminati
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Michele Baroni
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Greta Salafia
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Massimiliano Ruscica
- Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco Vicenzi
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Carugo
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Borghi
- Department of Science and High Technology, University of Insubria, Como, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, Como, Italy
| | | | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Bonzini
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
Xia X, Niu X, Chan K, Xu H, Shen Z, Cao JJ, Wu S, Qiu H, Ho KF. Effects of indoor air purification intervention on blood pressure, blood‑oxygen saturation, and heart rate variability: A double-blinded cross-over randomized controlled trial of healthy young adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162516. [PMID: 36868269 DOI: 10.1016/j.scitotenv.2023.162516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The use of indoor air purifier (IAP) has received growing attention as a mitigation strategy for reducing indoor air pollution, but the evidence on their cardiovascular benefits is unclear. This study aims to evaluate whether the use of IAP can reduce the adverse effects of indoor particulate matter (PM) on cardiovascular health among young healthy population. A randomized, double-blind, cross-over, IAP intervention of 38 college students was conducted. The participants were assigned into two groups to receive the true and sham IAPs for 36 h in random order. Systolic and diastolic blood pressure (SBP; DBP), blood oxygen saturation (SpO2), heart rate variability (HRV) and indoor size-fractioned particulate matter (PM) were real-time monitored throughout the intervention. We found that IAP could reduce indoor PM by 41.7-50.5 %. Using IAP was significantly associated with a reduction of 2.96 mmHg (95 % CI: -5.71, -0.20) in SBP. Increased PM was significantly associated with increased SBP (e.g., 2.17 mmHg [0.53, 3.81], 1.73 mmHg [0.32, 3.14] and 1.51 mmHg [0.28, 2.75] for an IQR increment of PM1 [16.7 μg/m3], PM2.5 [20.6 μg/m3] and PM10 [37.9 μg/m3] at lag 0-2 h, respectively) and decreased SpO2 (-0.44 % [-0.57, -0.29], -0.41 % [-0.53, -0.30] and - 0.40 % [-0.51, -0.30] for PM1, PM2.5 and PM10 at lag 0-1 h, respectively), which could last for about 2 h. Using IAPs could halve indoor PM levels, even in relatively low air pollution settings. The exposure-response relationships suggested that the benefits of IAPs on BP may only be observed when indoor PM exposure is reduced to a certain level.
Collapse
Affiliation(s)
- Xi Xia
- School of Public Health, Shaanxi University of Chinese Medicine, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, China.
| | - Kahung Chan
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, UK
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - ZhenXing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jun-Ji Cao
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - ShaoWei Wu
- School of Public Health, Xi'an Jiaotong University, China
| | - Hong Qiu
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Johnson T, Kanjo E, Woodward K. DigitalExposome: quantifying impact of urban environment on wellbeing using sensor fusion and deep learning. COMPUTATIONAL URBAN SCIENCE 2023; 3:14. [PMID: 36970599 PMCID: PMC10025809 DOI: 10.1007/s43762-023-00088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/29/2023]
Abstract
The increasing level of air pollutants (e.g. particulates, noise and gases) within the atmosphere are impacting mental wellbeing. In this paper, we define the term 'DigitalExposome' as a conceptual framework that takes us closer towards understanding the relationship between environment, personal characteristics, behaviour and wellbeing using multimodal mobile sensing technology. Specifically, we simultaneously collected (for the first time) multi-sensor data including urban environmental factors (e.g. air pollution including: Particulate Matter (PM1), (PM2.5), (PM10), Oxidised, Reduced, Ammonia (NH3) and Noise, People Count in the vicinity), body reaction (physiological reactions including: EDA, HR, HRV, Body Temperature, BVP and movement) and individuals' perceived responses (e.g. self-reported valence) in urban settings. Our users followed a pre-specified urban path and collected the data using a comprehensive sensing edge device. The data is instantly fused, time-stamped and geo-tagged at the point of collection. A range of multivariate statistical analysis techniques have been applied including Principle Component Analysis, Regression and Spatial Visualisations to unravel the relationship between the variables. Results showed that Electrodermal Activity (EDA) and Heart Rate Variability (HRV) are noticeably impacted by the level of Particulate Matter in the environment. Furthermore, we adopted Convolutional Neural Network (CNN) to classify self-reported wellbeing from the multimodal dataset which achieved an f1-score of 0.76.
Collapse
Affiliation(s)
- Thomas Johnson
- grid.12361.370000 0001 0727 0669Department of Computer Science, Nottingham Trent University, Nottingham, UK
| | - Eiman Kanjo
- grid.12361.370000 0001 0727 0669Department of Computer Science, Nottingham Trent University, Nottingham, UK
| | - Kieran Woodward
- grid.12361.370000 0001 0727 0669Department of Computer Science, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
4
|
Zhu YD, Fan L, Wang J, Yang WJ, Li L, Zhang YJ, Yang YY, Li X, Yan X, Yao XY, Wang XL. Spatiotemporal variation in residential PM2.5 and PM10 concentrations in China: National on-site survey. ENVIRONMENTAL RESEARCH 2021; 202:111731. [PMID: 34297935 DOI: 10.1016/j.envres.2021.111731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/10/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Significant efforts have been directed toward addressing the adverse health effects of particulate matter, while few data exist to evaluate indoor exposure nationwide in China. OBJECTIVES This study aimed to investigate dwellings particulate matter levels in the twelve cities in China and provide large data support for policymakers to accelerate the legislative process. METHODS The current study was based on the CIEHS 2018 study and conducted in 12 cities of China. A total of 2128 air samples were collected from 610 residential households during the summer and winter. Both PM10 and PM2.5 were detected with a light-scattering dust meter in both the living room and bedroom. The Wilcoxon rank-sum test was performed to evaluate the correlations between PM2.5 and PM10 concentrations and both sampling season and site. Ratios of the living room to bedroom were calculated to evaluate the particulate matter variation between rooms. Hierarchical clustering was used to probe the question of whether the concentration varies between cities throughout China. RESULTS The geometric means of the PM2.5 in living rooms and bedrooms were 39.80 and 36.55 μg/m3 in the summer, and 70.97 and 67.99 μg/m3 in the winter, respectively. In the summer, approximately 70 % of indoor dwelling PM2.5 exceeded the limit of 25 μg/m3, and for PM10 approximately 60 % of dwellings demonstrated levels higher than 50 μg/m3; the corresponding values were over 90 % and 80 % in winter, respectively. In Shijiazhuang, Lanzhou, Luoyang and Qingdao, the geometric means of the PM2.5 concentrations were observed to be 1.5 to 4.3 times higher during winter than during summer; similar concentrations in summer and winter were observed in Harbin, Wuxi, and Shenzhen, while the PM2.5 concentrations in Panjin were approximately 1.5 times higher in summer than in winter. There was no significant difference in particulate matter concentrations between the living rooms and bedrooms. Scatter plots showed that cities with low GDP and a small population had higher concentrations, while Shenzhen, which has a higher GDP and a large permanent population, had a relatively low concentration of particulate matter. CONCLUSIONS Our results suggest that indoor air pollution is a severe problem in China. It is necessary to continue monitoring indoor air quality to observe the changing trend under the tremendous effort of the Chinese government.
Collapse
Affiliation(s)
- Yuan-Duo Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Lin Fan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Jiao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Wen-Jing Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Li Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yu-Jing Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yu-Yan Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xu Yan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xiao-Yuan Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xian-Liang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| |
Collapse
|
5
|
Chungag A, Engwa GA, Sewani-Rusike CR, Nkeh-Chungag BN. Effect of Seasonal Variation on the Relationship of Indoor Air Particulate Matter with Measures of Obesity and Blood Pressure in Children. J Health Pollut 2021; 11:210610. [PMID: 34267997 PMCID: PMC8276733 DOI: 10.5696/2156-9614-11.30.210610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Particulate matter (PM) air pollution is an important environmental health risk factor. Although some studies have shown PM to be associated with obesity and hypertension, very few studies have assessed the association of indoor PM specifically with obesity and blood pressure measures in children with respect to seasonal variation. OBJECTIVES The present study investigated the relationship of PM with obesity and blood pressure variables in children across the winter and summer seasons. METHODS A comparative descriptive approach was adopted and school children from 10-14 years of age from selected rural and urban localities of the Eastern Cape Province of South Africa were assessed in winter and summer. Anthropometric measurements were taken, including height, weight, waist circumference, body mass index (BMI), and total fat mass (TFM), while blood pressure variables including systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were measured. Indoor air PM concentrations were measured in the classrooms in the presence of children. RESULTS The prevalence of obesity and hypertension in children were 13.4% and 5.1% in winter and 12.9% and 1.0% in summer, respectively. High blood pressure was more prevalent in children in rural areas, while the prevalence of obesity in children was higher in urban areas. Particulate matter was significantly (p<0.05) higher in rural areas compared to urban areas. Obese children in summer had a greater than 3-fold association (AOR: 3.681, p=0.005) with 4th interquartile range (IQR) of PM5 and a greater than 3- and 4-fold association (AOR: 3.08; 4.407; p<0.05) with 2nd and 4th IQR of PM10, respectively, than their overweight, normal weight or underweight counterparts. High blood pressure was not associated (p< 0.05) with PM. CONCLUSIONS High concentrations of indoor PM were positively associated with obesity in children in summer, particularly among rural children. This association could be accounted for by location and seasonal differences. PARTICIPANT CONSENT Obtained. ETHICS APPROVAL Ethics approval was obtained from the Health Sciences Ethics Committee of Walter Sisulu University, South Africa (Ref No: CHI011SCHU01). COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Anye Chungag
- Department of Geography and Environmental Sciences, Faculty of Science and Agriculture, University of Fort Hare, Alice, South Africa
| | - Godwill Azeh Engwa
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha, South Africa
| | | | - Benedicta Ngwenchi Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha, South Africa
| |
Collapse
|
6
|
Abdel-Salam MMM. Seasonal variation in indoor concentrations of air pollutants in residential buildings. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:761-777. [PMID: 33625321 DOI: 10.1080/10962247.2021.1895367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Indoor concentrations of PM10, PM2.5, CO, and CO2 were measured in 25 naturally ventilated urban residences during the winter and summer seasons in Alexandria, Egypt. Ambient air samples were also collected simultaneously for comparison to indoor measurements. Furthermore, data for air exchange rates, home characteristics, and indoor activities during sampling were collected. It was found that the average indoor PM10, PM2.5, CO, and CO2 concentrations for all homes in winter were 119.4 ± 30.9 μg/m3, 85.2 ± 25.8 μg/m3, 1.6 ± 0.8 ppm, and 692.4 ± 144.6 ppm, respectively. During summer, the average indoor levels were 98.8 ± 21.8 μg/m3, 67.8 ± 14.9 μg/m3, 0.5 ± 0.5 ppm, and 558.2 ± 66.2 ppm, respectively. The results indicate that the indoor daily averages of PM10 and PM2.5 concentrations were higher than the World Health Organization (WHO) guidelines for all selected homes in the two sampling periods. For CO and CO2 levels, the indoor daily averages for all monitored homes were less than the WHO guideline and the American National Standards Institute/American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ANSI/ASHRAE) Standard 62.1, respectively. A strong seasonal variability was observed, with air quality being particularly poor in winter. Due to increased ventilation rates in summer, indoor levels of air pollutants were strongly dependent on ambient levels, while in winter the indoor concentrations were more strongly affected by indoor sources due to increased human activities and poor ventilation. In addition, stronger indoor/outdoor correlation of air pollutants' levels was found in summer than in winter probably due to higher ventilation and infiltration in the summer. The study also attempted to understand the potential sources and the various determinants that influence indoor PM, CO, and CO2 concentrations in the two seasons. The findings can assist policymakers to better understand the indoor air pollution problem and to provide a sound basis for the development of proper national IAQ standards in Egypt.Implications: Personal exposure is considerably influenced by indoor air pollution which increases health risks. Assessment of indoor air quality has become a more significant issue in Egypt as people tend to spend most of their time inside buildings, especially in their homes. Currently, there is a lack of research on residential indoor air quality in Egyptian cities in terms of the spatial and temporal variation which prevents an accurate assessment of the current situation to develop effective mitigation measures and to establish national indoor air quality standards. This article is considered the first research studying the effect of seasonality on indoor concentrations of PM10, PM2.5, CO, and CO2 in urban residences in Alexandria. It also studies the indoor/outdoor relationship of air pollutants' levels and identifies their major sources as well as the various determinants that influence their indoor concentrations.
Collapse
Affiliation(s)
- Mahmoud M M Abdel-Salam
- Department of Environmental Sciences, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Hung SC, Cheng HY, Yang CC, Lin CI, Ho CK, Lee WH, Cheng FJ, Li CJ, Chuang HY. The Association of White Blood Cells and Air Pollutants-A Population-Based Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052370. [PMID: 33804362 PMCID: PMC7957746 DOI: 10.3390/ijerph18052370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 01/02/2023]
Abstract
The links of air pollutants to health hazards have been revealed in literature and inflammation responses might play key roles in the processes of diseases. WBC count is one of the indexes of inflammation, however the l iterature reveals inconsistent opinions on the relationship between WBC counts and exposure to air pollutants. The goal of this population-based observational study was to examine the associations between multiple air pollutants and WBC counts. This study recruited community subjects from Kaohsiung city. WBC count, demographic and health hazard habit data were collected. Meanwhile, air pollutants data (SO2, NO2, CO, PM10, and O3) were also obtained. Both datasets were merged for statistical analysis. Single- and multiple-pollutants models were adopted for the analysis. A total of 10,140 adults (43.2% males; age range, 33~86 years old) were recruited. Effects of short-term ambient concentrations (within one week) of CO could increase counts of WBC, neutrophils, monocytes, and lymphocytes. However, SO2 could decrease counts of WBC, neutrophils, and monocytes. Gender, BMI, and smoking could also contribute to WBC count increases, though their effects are minor when compared to CO. Air pollutants, particularly SO2, NO2 and CO, may thus be related to alterations of WBC counts, and this would imply air pollution has an impact on human systematic inflammation.
Collapse
Affiliation(s)
- Shih-Chiang Hung
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (S.-C.H.); (H.-Y.C.); (C.-K.H.)
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City 807, Taiwan; (W.-H.L.); (F.-J.C.); (C.-J.L.)
| | - Hsiao-Yuan Cheng
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (S.-C.H.); (H.-Y.C.); (C.-K.H.)
| | - Chen-Cheng Yang
- Departments of Occupational Medicine and Family Medicine, Kaohsiung Municipal Siaogang Hospital and Kaohsiung Medical University, Kaohsiung City 807, Taiwan;
| | - Chia-I Lin
- Department of Occupational Medicine, Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University, Kaohsiung City 807, Taiwan;
| | - Chi-Kung Ho
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (S.-C.H.); (H.-Y.C.); (C.-K.H.)
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
| | - Wen-Huei Lee
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City 807, Taiwan; (W.-H.L.); (F.-J.C.); (C.-J.L.)
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City 807, Taiwan; (W.-H.L.); (F.-J.C.); (C.-J.L.)
| | - Chao-Jui Li
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City 807, Taiwan; (W.-H.L.); (F.-J.C.); (C.-J.L.)
| | - Hung-Yi Chuang
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Department of Public Health and Environmental Medicine, College of Medicine, and Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Correspondence: ; Tel.: +886-7312-1101
| |
Collapse
|
8
|
Zhang L, An J, Tian X, Liu M, Tao L, Liu X, Wang X, Zheng D, Guo X, Luo Y. Acute effects of ambient particulate matter on blood pressure in office workers. ENVIRONMENTAL RESEARCH 2020; 186:109497. [PMID: 32304927 DOI: 10.1016/j.envres.2020.109497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Exposure to ambient particulate matter with a diameter of <2.5 μm (PM2.5) has been linked to increases in blood pressure. The aim of this study was to assess the effects of short-term exposure to PM2.5 on blood pressure in office workers in Beijing, China. A total of 4801 individuals aged 18-60 years underwent an annual medical examination between 2013 and 2017. Levels of air pollutants were obtained from 35 fixed monitoring stations and correlated with the employment location of each participant to predict personal exposure via kriging interpolation. Linear mixed-effects models were used to estimate the changes in blood pressure associated with PM2.5 exposure at various lag times. After adjusting for personal characteristics and other potential confounders, each interquartile range increase in PM2.5 was associated with a 0.413-mmHg (95% confidence interval [CI]: 0.252-0.573), 0.171-mmHg (95% CI: 0.053-0.288), 0.278-mmHg (95% CI: 0.152-0.404), and 0.241-mmHg (95% CI: 0.120-0.362) increase in systolic blood pressure, diastolic blood pressure, pulse pressure, and mean arterial pressure, respectively (p < 0.05). Men, individuals previously diagnosed with hypertension, and subjects working in the northern districts of Beijing had larger changes in blood pressure, and the effect sizes were 0.477-mmHg (95% CI: 0.286-0.669), 0.851-mmHg (95% CI: 0.306-1.397, and 0.672-mmHg (95% CI: 0.405-0.940). The findings suggested that exposure to PM2.5 had adverse effects on blood pressure, especially among males and hypertensive patients.
Collapse
Affiliation(s)
- Licheng Zhang
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Ji An
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xue Tian
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Mengyang Liu
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Lixin Tao
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiangtong Liu
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiaonan Wang
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Deqiang Zheng
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiuhua Guo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Yanxia Luo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
9
|
Tan YQ, Rashid SKA, Pan WC, Chen YC, Yu LE, Seow WJ. Association between microenvironment air quality and cardiovascular health outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137027. [PMID: 32044485 DOI: 10.1016/j.scitotenv.2020.137027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is associated with cardiovascular disease risk. To date, there are few studies on short-term PM2.5 exposure in different microenvironments and its impact on immediate health effects, particularly in the Southeast Asia region. This study assessed PM2.5 concentrations in different microenvironments in a densely populated city in the tropics using low-cost personal PM2.5 sensors as well as their associations with acute cardiovascular health outcomes. A total of 49 adult participants affiliated with the National University of Singapore (NUS) community were recruited. Personal low-cost sensors were used to measure PM2.5 concentrations between September 2017 and March 2019. Demographic information and time-activity patterns were collected using questionnaires. Wilcoxon pairwise comparisons were used to determine statistical differences between PM2.5 exposures at 18 different microenvironments. Generalized Estimating Equations (GEE) models were used to assess the association between PM2.5 exposure and blood pressure as well as heart rate. All models were adjusted for age, sex, body mass index, physical activity, temperature, duration of exposure, and baseline cardiovascular parameters. Significant differences in PM2.5 concentrations were observed across different microenvironments. Air-conditioned offices and tertiary teaching spaces had the lowest (median = 13.1 μg/m3) and hawker centres had the highest (median = 32.0 μg/m3) PM2.5 concentrations. Significant positive associations between PM2.5 exposure and heart rate (β = 0.40, p = 4.6 × 10-5) as well as diastolic blood pressure (β = 0.16, p = 0.0077) were also observed. Short-term exposure to PM2.5 was significantly associated with higher heart rate and blood pressure. Further work is needed to investigate the variations within each type of microenvironment and expand the study to other sub-populations such as the elderly and children.
Collapse
Affiliation(s)
- Yue Qian Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - S K Abdur Rashid
- Department of Civil & Environmental Engineering, National University of Singapore and NUS Environmental Research Institute, Singapore
| | - Wen-Chi Pan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Liya E Yu
- Department of Civil & Environmental Engineering, National University of Singapore and NUS Environmental Research Institute, Singapore
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore.
| |
Collapse
|
10
|
Wu QZ, Li S, Yang BY, Bloom M, Shi Z, Knibbs L, Dharmage S, Leskinen A, Jalaludin B, Jalava P, Roponen M, Lin S, Chen G, Guo Y, Xu SL, Yu HY, Zeeshan M, Hu LW, Yu Y, Zeng XW, Dong GH. Ambient Airborne Particulates of Diameter ≤1 μm, a Leading Contributor to the Association Between Ambient Airborne Particulates of Diameter ≤2.5 μm and Children's Blood Pressure. Hypertension 2019; 75:347-355. [PMID: 31838909 DOI: 10.1161/hypertensionaha.119.13504] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evidence on the associations between airborne particulates of diameter ≤1 μm (PM1) and airborne particulates of diameter ≤2.5 μm (PM2.5) and childhood blood pressure (BP) is scarce. To help to address this literature gap, we conducted a study to explore the associations in Chinese children. Between 2012 and 2013, we recruited 9354 children, aged 5 to 17 years, from 62 schools in 7 northeastern Chinese cities. We measured their BP with a mercury sphygmomanometer. We used a spatiotemporal model to estimate daily ambient PM1 and PM2.5 exposures, which we assigned to participants' home addresses. Associations between particulate matter exposure and BP were evaluated with generalized linear mixed regression models. The findings indicated that exposure to each 10 mg/m3 greater PM1 was significantly associated with 2.56 mm Hg (95% CI, 1.47-3.65) higher systolic BP and 61% greater odds for hypertension (odds ratio=1.61 [95% CI, 1.18-2.18]). PM1 appears to play an important role in associations reported between PM2.5 exposure and BP, and we found that the ambient PM1/PM2.5 ratio (range, 0.80-0.96) was associated with BP and with hypertension. Age and body weight modified associations between air pollutants and BP (P<0.01), with stronger associations among younger (aged ≤11 years) and overweight/obese children. This study provides the first evidence that long-term exposure to PM1 is associated with hypertension in children, and that PM1 might be a leading contributor to the hypertensive effect of PM2.5. Researchers and policy makers should pay closer attention to the potential health impacts of PM1.
Collapse
Affiliation(s)
- Qi-Zhen Wu
- From the Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (Q.-Z.W., B.-Y.Y., M.B., S.-L.X., H.-Y.Y., M.Z., L.-W.H., X.-W.Z., G.-H.D.)
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia (S.L., G.C., Y.G.)
| | - Bo-Yi Yang
- From the Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (Q.-Z.W., B.-Y.Y., M.B., S.-L.X., H.-Y.Y., M.Z., L.-W.H., X.-W.Z., G.-H.D.)
| | - Michael Bloom
- From the Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (Q.-Z.W., B.-Y.Y., M.B., S.-L.X., H.-Y.Y., M.Z., L.-W.H., X.-W.Z., G.-H.D.).,Departments of Environmental Health Sciences and Epidemiology and Biostatics, University at Albany, State University of New York, Rensselaer, NY (M.B., S.L.)
| | - Zhidong Shi
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China (Z.S.)
| | - Luke Knibbs
- School of Public Health, The University of Queensland, Herston, Queensland, Australia (L.K.)
| | - Shyamali Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Australia (S.D.)
| | - Ari Leskinen
- Finnish Meteorological Institute, Kuopio, Finland (A.L.).,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland (A.L.)
| | - Bin Jalaludin
- Centre for Air Quality and Health Research and Evaluation, Glebe, Australia (B.J.).,IIngham Institute for Applied Medical Research, University of New South Wales, Sydney, Australia (B.J.)
| | - Pasi Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio (P.J., M.R.)
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio (P.J., M.R.)
| | - Shao Lin
- Departments of Environmental Health Sciences and Epidemiology and Biostatics, University at Albany, State University of New York, Rensselaer, NY (M.B., S.L.)
| | - Gongbo Chen
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia (S.L., G.C., Y.G.)
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia (S.L., G.C., Y.G.)
| | - Shu-Li Xu
- From the Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (Q.-Z.W., B.-Y.Y., M.B., S.-L.X., H.-Y.Y., M.Z., L.-W.H., X.-W.Z., G.-H.D.)
| | - Hong-Yao Yu
- From the Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (Q.-Z.W., B.-Y.Y., M.B., S.-L.X., H.-Y.Y., M.Z., L.-W.H., X.-W.Z., G.-H.D.)
| | - Mohammed Zeeshan
- From the Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (Q.-Z.W., B.-Y.Y., M.B., S.-L.X., H.-Y.Y., M.Z., L.-W.H., X.-W.Z., G.-H.D.)
| | - Li-Wen Hu
- From the Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (Q.-Z.W., B.-Y.Y., M.B., S.-L.X., H.-Y.Y., M.Z., L.-W.H., X.-W.Z., G.-H.D.)
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China (Y.Y.)
| | - Xiao-Wen Zeng
- From the Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (Q.-Z.W., B.-Y.Y., M.B., S.-L.X., H.-Y.Y., M.Z., L.-W.H., X.-W.Z., G.-H.D.)
| | - Guang-Hui Dong
- From the Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (Q.-Z.W., B.-Y.Y., M.B., S.-L.X., H.-Y.Y., M.Z., L.-W.H., X.-W.Z., G.-H.D.)
| |
Collapse
|
11
|
Gilbey SE, Reid CM, Huxley RR, Soares MJ, Zhao Y, Rumchev K. Associations Between Sub-Clinical Markers of Cardiometabolic Risk and Exposure to Residential Indoor Air Pollutants in Healthy Adults in Perth, Western Australia: A Study Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193548. [PMID: 31546738 PMCID: PMC6801858 DOI: 10.3390/ijerph16193548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND A growing body of epidemiological and clinical evidence has implicated air pollution as an emerging risk factor for cardiometabolic disease. Whilst individuals spend up to two-thirds of daily time in their domestic residential environment, very few studies have been designed to objectively measure the sub-clinical markers of cardiometabolic risk with exposure to domestic indoor air pollutants. This cross-sectional study aims to investigate associations between the components of domestic indoor air quality and selected sub-clinical cardiometabolic risk factors in a cohort of healthy adults living in Perth, Western Australia. METHODS One hundred and eleven non-smoking adults (65% female) living in non-smoking households who were aged between 35-69 years were recruited for the project. Study subjects were invited to participate in all sections of the study, which included: Domestic indoor air monitoring along with the concurrent 24 h ambulatory monitoring of peripheral and central blood pressure and measures of central hemodynamic indices, standardized questionnaires on aspects relating to current health status and the domestic environment, a 24 h time-activity diary during the monitoring period, and clinic-based health assessment involving collection of blood and urine biomarkers for lipid and glucose profiles, as well as measures of renal function and an analysis of central pulse wave and pulse wave velocity. RESULTS This study provides a standardized approach to the study of sub-clinical cardiometabolic health effects that are related to the exposure to indoor air pollution. CONCLUSION The findings of this study may provide direction for future research that will further contribute to our understanding of the relationship that exists between indoor air pollution and sub-clinical markers of cardiometabolic risk.
Collapse
Affiliation(s)
- Suzanne E Gilbey
- School of Public Health, Curtin University, Perth, WA 6148, Australia.
| | - Christopher M Reid
- School of Public Health, Curtin University, Perth, WA 6148, Australia.
- School of Public Health and Preventative Medicine, Monash University, Melbourne, VIC 3800, Australia.
| | - Rachel R Huxley
- School of Public Health, Curtin University, Perth, WA 6148, Australia.
- College of Science, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Mario J Soares
- School of Public Health, Curtin University, Perth, WA 6148, Australia.
| | - Yun Zhao
- School of Public Health, Curtin University, Perth, WA 6148, Australia.
| | - Krassi Rumchev
- School of Public Health, Curtin University, Perth, WA 6148, Australia.
| |
Collapse
|
12
|
Real-Time Monitoring of Indoor Air Quality with Internet of Things-Based E-Nose. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9163435] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Today, air pollution is the biggest environmental health problem in the world. Air pollution leads to adverse effects on human health, climate and ecosystems. Air is contaminated by toxic gases released by industry, vehicle emissions and the increased concentration of harmful gases and particulate matter in the atmosphere. Air pollution can cause many serious health problems such as respiratory, cardiovascular and skin diseases in humans. Nowadays, where air pollution has become the largest environmental health risk, the interest in monitoring air quality is increasing. Recently, mobile technologies, especially the Internet of Things, data and machine learning technologies have a positive impact on the way we manage our health. With the production of IoT-based portable air quality measuring devices and their widespread use, people can monitor the air quality in their living areas instantly. In this study, e-nose, a real-time mobile air quality monitoring system with various air parameters such as CO2, CO, PM10, NO2 temperature and humidity, is proposed. The proposed e-nose is produced with an open source, low cost, easy installation and do-it-yourself approach. The air quality data measured by the GP2Y1010AU, MH-Z14, MICS-4514 and DHT22 sensor array can be monitored via the 32-bit ESP32 Wi-Fi controller and the mobile interface developed by the Blynk IoT platform, and the received data are recorded in a cloud server. Following evaluation of results obtained from the indoor measurements, it was shown that a decrease of indoor air quality was influenced by the number of people in the house and natural emissions due to activities such as sleeping, cleaning and cooking. However, it is observed that even daily manual natural ventilation has a significant improving effect on air quality.
Collapse
|
13
|
Rivas I, Fussell JC, Kelly FJ, Querol X. Indoor Sources of Air Pollutants. INDOOR AIR POLLUTION 2019. [DOI: 10.1039/9781788016179-00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
People spend an average of 90% of their time in indoor environments. There is a long list of indoor sources that can contribute to increased pollutant concentrations, some of them related to human activities (e.g. people's movement, cooking, cleaning, smoking), but also to surface chemistry reactions with human skin and building and furniture surfaces. The result of all these emissions is a heterogeneous cocktail of pollutants with varying degrees of toxicity, which makes indoor air quality a complex system. Good characterization of the sources that affect indoor air pollution levels is of major importance for quantifying (and reducing) the associated health risks. This chapter reviews some of the more significant indoor sources that can be found in the most common non-occupational indoor environments.
Collapse
|
14
|
Yang BY, Guo Y, Bloom MS, Xiao X, Qian ZM, Liu E, Howard SW, Zhao T, Wang SQ, Li S, Chen DH, Ma H, Yim SHL, Liu KK, Zeng XW, Hu LW, Liu RQ, Feng D, Yang M, Xu SL, Dong GH. Ambient PM 1 air pollution, blood pressure, and hypertension: Insights from the 33 Communities Chinese Health Study. ENVIRONMENTAL RESEARCH 2019; 170:252-259. [PMID: 30597289 DOI: 10.1016/j.envres.2018.12.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 05/27/2023]
Abstract
No evidence exists concerning the association between blood pressure and ambient particles with aerodynamic diameter ≤ 1.0 µm (PM1), a major component of PM2.5 (≤ 2.5 µm) particles, and potentially causing more hazardous health effects than PM2.5. We aimed to examine the associations of blood pressure in adults with both PM1 and PM2.5 in China. In 2009, we randomly selected 24,845 participants aged 18-74 years from 33 communities in China. Using a standardized mercuric-column sphygmomanometer, we measured blood pressure. Long-term exposure (2006-08) to PM1 and PM2.5 were estimated using a spatial statistical model. Generalized linear mixed models were used to evaluate the associations between air pollutants and blood pressure and hypertension prevalence, controlling for multiple covariates. A 10-μg/m3 increase in PM1 was significantly associated with an increase of 0.57 (95% CI 0.31-0.83) mmHg in systolic blood pressure (SBP), 0.19 (95% CI 0.03-0.35) mmHg increase in diastolic blood pressure (DBP), and a 5% (OR=1.05; 95% CI 1.01-1.10) increase in odds for hypertension. Similar associations were detected for PM2.5. Furthermore, PM1-2.5 showed no association with blood pressure or hypertension. In summary, both PM1 and PM2.5 exposures were associated with elevated blood pressure levels and hypertension prevalence in Chinese adults. In addition, most of the pro-hypertensive effects of PM2.5 may come from PM1. Further longitudinal designed studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Michael S Bloom
- Departments of Environmental Health Sciences and Epidemiology and Biostatics, University at Albany, State University of New York, Rensselaer, NY, United States
| | - Xiang Xiao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, United States
| | - Echu Liu
- Department of Health Management and Policy, College for Public Health and Social Justice Saint Louis University, Saint Louis, MO 63104, United States
| | - Steven W Howard
- Department of Health Management and Policy, College for Public Health and Social Justice Saint Louis University, Saint Louis, MO 63104, United States
| | - Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, 80336 Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Si-Quan Wang
- Department of Biostatistics, Havard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Duo-Hong Chen
- Department of Air Quality Forecasting and Early Warning, Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou 510308, China
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Steve Hung-Lam Yim
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Stanley Ho Big Data Decision Analytics Research Centre, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China
| | - Kang-Kang Liu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Feng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mo Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|