1
|
Liu Y, Zheng Z, Liu H, Hou D, Li H, Li Y, Jing W, Jin H, Wang Y, Ma S. Residual Change of Four Pesticides in the Processing of Pogostemon cablin and Associated Factors. Molecules 2023; 28:6675. [PMID: 37764451 PMCID: PMC10535192 DOI: 10.3390/molecules28186675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Before use as medicines, most traditional Chinese medicine (TCM) plants are processed and decocted. During processing, there may be some changes in pesticide residues in TCM. In recent years, reports have studied the changes of pesticides during the processes of boiling, drying and peeling of TCM materials but have rarely involved special processing methods for TCM, such as ethanol extraction and volatile oil extraction. The changes of carbendazim, carbofuran, pyridaben and tebuconazole residues in common processing methods for P. cablin products were systemically assessed in this study. After each processing step, the pesticides were quantitated by UPLC-MS/MS. The results showed amount decreases in various pesticides to different extents after each processing procedure. Processing factor (PF) values for the four pesticides after decoction, 75% ethanol extraction and volatile oil extraction were 0.02~0.75, 0.40~0.98 and 0~0.02, respectively, which indicated that residual pesticide concentrations may depend on the processing technique. A risk assessment according to the hazard quotient with PF values showed that residual pesticide amounts in P. cablin were substantially lower than levels potentially posing a health risk. Overall, these findings provide insights into the safety assessment of P. cablin.
Collapse
Affiliation(s)
- Yuanxi Liu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Zuntao Zheng
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Hongbin Liu
- China Animal Disease Control Center, Ministry of Agriculture and Rural Affairs, Beijing 102629, China
| | - Dongjun Hou
- China Animal Disease Control Center, Ministry of Agriculture and Rural Affairs, Beijing 102629, China
| | - Hailiang Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Yaolei Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Wenguang Jing
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| |
Collapse
|
2
|
Wang L, Wu F, Hong Y, Shen L, Zhao L, Lin X. Research progress in the treatment of slow transit constipation by traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115075. [PMID: 35134487 DOI: 10.1016/j.jep.2022.115075] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Slow transit constipation (STC) is a common gastrointestinal disorder seriously impacting patients' quality of life. At present, although conventional chemical drugs effectively control STC symptoms in the short term, the long-term effects are poor, and the side effects are significant. In this regard, traditional Chinese medicine (TCM) offers an opportunity for STC treatment. Many pharmacological and clinical studies have confirmed this efficacy of TCM with multiple targets and mechanisms. AIM OF THE STUDY This review attempted to summarize the characteristics of TCM (compound prescriptions, single Chinese herbs, and active ingredients) for STC treatment and discussed their efficacy based on analyzing the pathogenesis of STC. MATERIALS AND METHODS The information was acquired from different databases, including PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang databases. We then focused on the recent research progress in STC treatment by TCM. Finally, the future challenges and trends are proposed. RESULTS TCM has good clinical efficacy in the treatment of STC with multi-mechanisms. Based on the theory of syndrome differentiation, five kinds of dialectical treatment for STC by compound TCM prescriptions were introduced, namely: Nourishing Yin and moistening the intestines; Promoting blood circulation and removing blood stasis; Warming Yang and benefiting Qi; Soothing the liver and regulating Qi; and Benefiting Qi and strengthening the spleen. In addition, six single Chinese herbs and eight active ingredients also show good efficacy in STC treatment. CONCLUSIONS TCM, especially compound prescriptions, has bright prospects in treating STC attributed to its various holistic effects.
Collapse
Affiliation(s)
- LiangFeng Wang
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - YanLong Hong
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - LiJie Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
3
|
Zhang D, Yang B, Chang SQ, Ma SS, Sun JX, Yi L, Li X, Shi HM, Jing B, Zheng YC, Zhang CL, Chen FG, Zhao GP. Protective effect of paeoniflorin on H 2O 2 induced Schwann cells injury based on network pharmacology and experimental validation. Chin J Nat Med 2021; 19:90-99. [PMID: 33641788 DOI: 10.1016/s1875-5364(21)60010-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 02/07/2023]
Abstract
This study was to investigate the protective effect of paeoniflorin (PF) on hydrogen peroxide-induced injury. Firstly, "SMILES" of PF was searched in Pubchem and further was used for reverse molecular docking in Swiss Target Prediction database to obtain potential targets. Injury-related molecules were obtained from GeenCards database, and the predicted targets of PF for injury treatment were selected by Wayne diagram. For mechanism analysis, the protein-protein interactions were constructed by String, and the KEGG analysis was conducted in Webgestalt. Then, cell viability and cytotoxicity assay were established by CCK8 assay. Also, the experimental cells were allocated to control, model (200 μmol·L-1 H2O2), SB203580 10 μmol·L-1 (200 μmol·L-1 H2O2+ SB203580 10 μmol·L-1), PF 50 μmol·L-1 (200 μmol·L-1 H2O2+ PF 50 μmol·L-1), and PF 100 μmol·L-1 (200 μmol·L-1 H2O2+ PF 100 μmol·L-1) groups. We measured the intracellular ROS, Hoechst 33258 staining, cell apoptosis, the levels of Bcl-xl, Bcl-2, Caspase-3, Cleaved-caspase3, Cleaved-caspase7, TRPA1, TRPV1, and the phosphorylation expression of p38MAPK. There are 96 potential targets that may be associated with PF for injury treatment. Then, we chose the "Inflammatory mediator regulation of TRP channels" pathway for the experimental verification from the first 10 KEGG pathway. In experimental verification, H2O2 decreased the cell viability moderately (P < 0.05), and 100 μmol·L -1 PF increased the cell viability significantly (P < 0.05). Depending on the difference of intracellular ROS fluorescence intensity, PF inhibited H 2O2-induced reactive oxygen species production in Schwann cells. In Hoechst 33258 staining, PF reversed the condensed chromatin and apoptotic nuclei following H2O2 treatment. Moreover, Flow cytometry results showed that PF could substantially inhibit H2O2 induced apoptosis (P < 0.05). Pretreatment with PF obviously reduced the levels of Caspase3, Cleaved-caspase3, Cleaved-caspase7, TRPA1, TRPV1, and the phosphorylation expression of p38MAPK after H 2O2 treatment (P < 0.05), increased the levels of Bcl-2, and Bcl-xl ( P < 0.05). PF inhibited Schwann cell injury and apoptosis induced by hydrogen peroxide, which mechanism was linked to the inhibition of phosphorylation of p38MAPK.
Collapse
Affiliation(s)
- Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Bing Yang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Shi-Quan Chang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Sheng-Suo Ma
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Jian-Xin Sun
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Lin Yi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Xing Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Hui-Mei Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Ya-Chun Zheng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Chun-Lan Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Feng-Guo Chen
- LiWan Hospital of Traditional Chinese Medicine, Guangzhou 510665, China
| | - Guo-Ping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China.
| |
Collapse
|