1
|
Florez-Garcia V, Torres-Saballeth J, Tuesca-Molina R, Acosta-Reyes J, Guevara-Romero E, Nohora N, Santacruz-Salas E, Acosta-Vergara T. Water sources and educational attainment in Colombian adults: evidence from the national nutritional survey. BMC Public Health 2025; 25:1385. [PMID: 40221690 PMCID: PMC11992871 DOI: 10.1186/s12889-025-22577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Academic achievement is essential to people's individual and social development by enhancing opportunities for significant personal achievement throughout life. Exposure to toxic agents due to poor water quality may negatively influence neurodevelopment in children and adolescents into adulthood. OBJECTIVE We aimed to estimate the association between the type of water for drinking purposes and academic achievements in Colombian adults. METHODS We designed a cross-sectional study based on the National Survey of Nutritional Situation in Colombia (Encuesta Nacional de la Situación Nutricional en Colombia -ENSIN-) 2015. Academic achievement in our study was classified as less than complete primary school (0-4 years), between complete primary and incomplete secondary (5-10 years), between complete secondary and incomplete higher education (11-15 years), and complete higher education and more (16-24 years). We utilized adjusted ordinal logistic regression to estimate betas (β's) and Odds Ratio [OR] with 95% confidence intervals [95%CI]. RESULTS After adjusting for potential confounders, we report an inverse association between consumption of untreated water and academic attainments, where individuals who drink surface water [β: -0.625; 95%CI: -0.629, -0.620], or groundwater [β: -0.368; 95%CI: -0.372, -0.364] were less likely to achieve higher educational levels compared to those consuming treated water. This pattern was similar across the country when disaggregated by region. CONCLUSION We found that people with lower levels of education are more likely to consume untreated water in Colombia. Our results encourage improving access to treated water to the population with an emphasis on rural communities and the Atlantic region.
Collapse
Affiliation(s)
- Victor Florez-Garcia
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois, 1603 W. Taylor St. Suite 989 SPHPI, Chicago, 60612, IL, USA.
- Department of Public Health, Universidad del Norte, Barranquilla, Colombia.
| | | | | | - Jorge Acosta-Reyes
- Department of Public Health, Universidad del Norte, Barranquilla, Colombia
| | - Edwin Guevara-Romero
- Joseph J. Zilber College of Public Health, University of Wisconsin, Milwaukee, USA
| | - Natalia Nohora
- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
2
|
Espitia-Pérez P, Espitia-Pérez L, Peñata-Taborda A, Brango H, Pastor-Sierra K, Galeano-Páez C, Arteaga-Arroyo G, Humanez-Alvarez A, Rodríguez Díaz R, Salas Osorio J, Valderrama LA, Saint’Pierre TD. Genetic Damage and Multi-Elemental Exposure in Populations in Proximity to Artisanal and Small-Scale Gold (ASGM) Mining Areas in North Colombia. TOXICS 2025; 13:202. [PMID: 40137529 PMCID: PMC11946375 DOI: 10.3390/toxics13030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 03/29/2025]
Abstract
This study evaluates DNA damage and multi-element exposure in populations from La Mojana, a region of North Colombia heavily impacted by artisanal and small-scale gold mining (ASGM). DNA damage markers from the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, including micronucleated binucleated cells (MNBN), nuclear buds (NBUDs) and nucleoplasmic bridges (NPB), were assessed in 71 exposed individuals and 37 unexposed participants. Exposed individuals had significantly higher MNBN frequencies (PR = 1.26, 95% CI: 1.02-1.57, p = 0.039). Principal Component Analysis (PCA) identified the "Soil-Derived Mining-Associated Elements" (PC1), including V, Fe, Al, Co, Ba, Se and Mn, as being strongly associated with high MNBN frequencies in the exposed population (PR = 10.45, 95% CI: 9.75-12.18, p < 0.001). GAMLSS modeling revealed non-linear effects of PC1, with greater increases in MNBN at higher concentrations, especially in exposed individuals. These results highlight the dual role of essential and toxic elements, with low concentrations being potentially protective but higher concentrations increasing genotoxicity. Women consistently exhibited higher MNBN frequencies than men, suggesting sex-specific susceptibilities. This study highlights the compounded risks of chronic metal exposure in mining-impacted regions and underscores the urgent need for targeted interventions to mitigate genotoxic risks in vulnerable populations.
Collapse
Affiliation(s)
- Pedro Espitia-Pérez
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (A.P.-T.); (K.P.-S.); (C.G.-P.); (G.A.-A.); (A.H.-A.)
| | - Lyda Espitia-Pérez
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (A.P.-T.); (K.P.-S.); (C.G.-P.); (G.A.-A.); (A.H.-A.)
| | - Ana Peñata-Taborda
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (A.P.-T.); (K.P.-S.); (C.G.-P.); (G.A.-A.); (A.H.-A.)
| | - Hugo Brango
- Facultad de Educación y Ciencias, Departamento de Matemáticas, Universidad de Sucre, Sincelejo 700003, Colombia;
| | - Karina Pastor-Sierra
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (A.P.-T.); (K.P.-S.); (C.G.-P.); (G.A.-A.); (A.H.-A.)
| | - Claudia Galeano-Páez
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (A.P.-T.); (K.P.-S.); (C.G.-P.); (G.A.-A.); (A.H.-A.)
| | - Gean Arteaga-Arroyo
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (A.P.-T.); (K.P.-S.); (C.G.-P.); (G.A.-A.); (A.H.-A.)
| | - Alicia Humanez-Alvarez
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (A.P.-T.); (K.P.-S.); (C.G.-P.); (G.A.-A.); (A.H.-A.)
| | - Ruber Rodríguez Díaz
- Hospital Alma Máter, Unidad de Cuidados Intensivos (UCI), Medellín 050001, Colombia;
| | - Javier Salas Osorio
- Hospital Alma Máter, Servicios Ambulatorios, Coordinación Médica, Medellín 050001, Colombia;
| | | | | |
Collapse
|
3
|
Espitia-Pérez L, Brango H, Peñata-Taborda A, Galeano-Páez C, Jaramillo-García M, Espitia-Pérez P, Pastor-Sierra K, Bru-Cordero O, Hoyos-Giraldo LS, Reyes-Carvajal I, Saavedra-Trujillo D, Ricardo-Caldera D, Coneo-Pretelt A. Influence of genetic polymorphisms of Hg metabolism and DNA repair on the frequencies of micronuclei, nucleoplasmic bridges, and nuclear buds in communities living in gold mining areas. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503790. [PMID: 39054006 DOI: 10.1016/j.mrgentox.2024.503790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Fishing communities living near gold mining areas are at increased risk of mercury (Hg) exposure via bioaccumulation of methylmercury (MeHg) in fish. This exposure has been linked to health effects that may be triggered by genotoxic events. Genetic polymorphisms play a role in the risk associated with Hg exposure. This study evaluated the effect of single nucleotide polymorphisms (SNPs) in metabolic and DNA repair genes on genetic instability and total hair Hg (T-Hg) levels in 78 individuals from "La Mojana" in northern Colombia and 34 individuals from a reference area. Genetic instability was assessed by the frequency of micronuclei (MNBN), nuclear buds (NBUDS), and nucleoplasmic bridges (NPB). We used a Poisson regression to assess the influence of SNPs on T-Hg levels and genetic instability, and a Bayesian regression to examine the interaction between Hg detoxification and DNA repair. Among exposed individuals, carriers of XRCC1Arg399Gln had a significantly higher frequency of MNBN. Conversely, the XRCC1Arg194Trp and OGG1Ser326Cys polymorphisms were associated with lower frequencies of MNBN. XRCC1Arg399Gln, XRCC1Arg280His, and GSTM1Null carriers showed lower NPB frequencies. Our results also indicated that individuals with the GSTM1Nulland GSTT1null polymorphisms had a 1.6-fold risk for higher T-Hg levels. The Bayesian model showed increased MNBN frequencies in carriers of the GSTM1Null polymorphism in combination with XRCC1Arg399Gln and increased NBUDS frequencies in the GSTM1Null carriers with the XRCC3Thr241Met and OGG1Ser326Cys alleles. The GSTM1+ variant was found to be a protective factor in individuals carrying OGG1Ser326Cys (MNBN) and XRCC1Arg280His (NPB); the GSTT1+ polymorphism combined with XRCCArg194Trp also modulated lower MNBN frequencies, while GSTT1+ carriers with the XRCC1Arg399Gln allele showed lower NPB frequencies. Consistent with GSTM1, GSTT1Null carriers with XRCC3Thr241Met showed increased NBUDS frequency. With the rise of gold mining activities, these approaches are vital to identify and safeguard populations vulnerable to Hg's toxic effects.
Collapse
Affiliation(s)
- Lyda Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia.
| | - Hugo Brango
- Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla, Colombia
| | - Ana Peñata-Taborda
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Claudia Galeano-Páez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Manolo Jaramillo-García
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia (Postmorten)
| | - Pedro Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Karina Pastor-Sierra
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Osnamir Bru-Cordero
- Universidad Nacional de Colombia, Dirección académica, kilómetro 9, vía Valledupar-La Paz, La Paz, Cesar, Colombia
| | - Luz Stella Hoyos-Giraldo
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Ingrid Reyes-Carvajal
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Diana Saavedra-Trujillo
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Dina Ricardo-Caldera
- Grupo de Investigación Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Andrés Coneo-Pretelt
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| |
Collapse
|
4
|
Pastor-Sierra K, Espitia-Pérez L, Espitia-Pérez P, Peñata-Taborda A, Brango H, Galeano-Páez C, Bru-Cordero OE, Palma-Parra M, Díaz SM, Trillos C, Briceño L, Idrovo ÁJ, Miranda-Pacheco J, Téllez E, Jiménez-Vidal L, Coneo-Pretelt A, Álvarez AH, Arteaga-Arroyo G, Ricardo-Caldera D, Salcedo-Arteaga S, Porras-Ramírez A, Varona-Uribe M. Micronuclei frequency and exposure to chemical mixtures in three Colombian mining populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165789. [PMID: 37499817 DOI: 10.1016/j.scitotenv.2023.165789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The Colombian mining industry has witnessed significant growth. Depending on the scale and mineral extracted, complex chemical mixtures are generated, impacting the health of occupationally exposed populations and communities near mining projects. Increasing evidence suggests that chromosomal instability (CIN) is an important link between the development of certain diseases and exposure to complex mixtures. To better understand the effects of exposure to complex mixtures we performed a biomonitoring study on 407 healthy individuals from four areas: three located in municipalities exploiting different-scale mining systems and a reference area with no mining activity. Large, medium, and small-scale mining systems were analyzed in Montelibano (Córdoba), artisanal and small-scale mining (ASGM) in Nechí (Antioquia), and a closed mining system in Aranzazu (Caldas). The reference area with no mining activity was established in Montería (Córdoba). ICP-MS measured multi-elemental exposure in hair, and CIN was evaluated using the cytokinesis-block micronucleus technique (MNBN). Exposure to mixtures of chemical elements was comparable in workers and residents of the mining areas but significantly higher compared to reference individuals. In Montelibano, increased MNBN frequencies were associated with combined exposure to Se, Hg, Mn, Pb, and Mg. This distinct pattern significantly differed from other areas. Specifically, in Nechí, Cr, Ni, Hg, Se, and Mg emerged as the primary contributors to elevated frequencies of MNBN. In contrast, a combination of Hg and Ni played a role in increasing MNBN in Aranzazu. Interestingly, Se consistently correlated with increased MNBN frequencies across all active mining areas. Chemical elements in Montelibano exhibit a broader range compared to other mining zones, reflecting the characteristics of the high-impact and large-scale mining in the area. This research provides valuable insights into the effects of exposure to chemical mixtures, underscoring the importance of employing this approach in the risk assessment of communities, especially those from residential areas.
Collapse
Affiliation(s)
- Karina Pastor-Sierra
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia; Programa de doctorado en Salud Pública, Universidad El Bosque, Bogotá, Colombia
| | - Lyda Espitia-Pérez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia.
| | - Pedro Espitia-Pérez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Ana Peñata-Taborda
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Hugo Brango
- Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla, Colombia
| | - Claudia Galeano-Páez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | | | - Marien Palma-Parra
- Dirección de Investigación en Salud Pública, Grupo de Salud Ambiental y Laboral, Instituto Nacional de Salud, Bogotá, Colombia
| | - Sonia M Díaz
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Trillos
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Leonardo Briceño
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Álvaro J Idrovo
- Departamento de Salud Pública, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Juan Miranda-Pacheco
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Eliana Téllez
- Dirección de Investigación en Salud Pública, Grupo de Salud Ambiental y Laboral, Instituto Nacional de Salud, Bogotá, Colombia
| | - Luisa Jiménez-Vidal
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Andrés Coneo-Pretelt
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Alicia Humanez Álvarez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Gean Arteaga-Arroyo
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Dina Ricardo-Caldera
- Grupo de Investigación en Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Shirley Salcedo-Arteaga
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | | | - Marcela Varona-Uribe
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
5
|
Calao-Ramos CR, Marrugo Negrete JL, Urango Cárdenas I, Díez S. Genotoxicity and mutagenicity in blood and drinking water induced by arsenic in an impacted gold mining region in Colombia. ENVIRONMENTAL RESEARCH 2023; 233:116229. [PMID: 37236386 DOI: 10.1016/j.envres.2023.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Arsenic (As) is one of the most dangerous substances that can affect human health and long-term exposure to As in drinking water can even cause cancer. The objective of this study was to investigate the concentrations of total As in the blood of inhabitants of a Colombian region impacted by gold mining and to evaluate its genotoxic effect through DNA damage by means of the comet assay. Additionally, the concentration of As in the water consumed by the population as well as the mutagenic activity of drinking water (n = 34) in individuals were determined by hydride generator atomic absorption spectrometry and the Ames test, respectively. In the monitoring, the study population was made up of a group of 112 people, including inhabitants of four municipalities: Guaranda, Sucre, Majagual, and San Marcos from the Mojana region as the exposed group, and Montería as a control group. The results showed DNA damage related to the presence of As in blood (p < 0.05) in the exposed population, and blood As concentrations were above the maximum allowable limit of 1 μg/L established by the ATSDR. A mutagenic activity of the drinking water was observed, and regarding the concentrations of As in water, only one sample exceeded the maximum permissible value of 10 μg/L established by the WHO. The intake of water and/or food containing As is potentially generating DNA damage in the inhabitants of the Mojana region, which requires surveillance and control by health entities to mitigate these effects.
Collapse
Affiliation(s)
- Clelia Rosa Calao-Ramos
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia; Universidad de Córdoba, Carrera 6 No. 76-103, Montería, College of Health Sciences, Bacteriology Department, Córdoba, Colombia
| | - Jose Luis Marrugo Negrete
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia.
| | - Iván Urango Cárdenas
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
6
|
Suárez-Criado L, Rodríguez-González P, Marrugo-Negrete J, García Alonso JI, Díez S. Determination of methylmercury and inorganic mercury in human hair samples of individuals from Colombian gold mining regions by double spiking isotope dilution and GC-ICP-MS. ENVIRONMENTAL RESEARCH 2023; 231:115970. [PMID: 37119841 DOI: 10.1016/j.envres.2023.115970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
With the aim to distinguish between routes of exposition to mercury (Hg) in artisanal and small-scale gold mining (ASGM) communities and to distinguish between Hg contamination sources, Hg species composition should be performed in human biomarkers. In this work, Hg species-specific determination were determined in human hair samples (N = 96), mostly non-directly occupied in ASGM tasks, from the six most relevant gold mining Colombian regions. Therefore, MeHg, Hg(II) and THg concentrations were simultaneously determined by double spiking species-specific isotope dilution mass spectrometry (IDMS) and GC-ICP-MS. Only 16.67% of participants were involved at some point in AGSM works and fish consumption ranged from 3 to 7 times/week, which is between medium and high intake levels. The median concentration of THg obtained from all samples is higher than the reference dose weekly acceptable of MeHg intake established by the EPA (1 ppm), whereas a 25% were more than 4 times higher than the WHO level (2.2 μg Hg g-1). Median THg value of individuals consuming fish 5-7 times per week was significantly higher (p < 0.05) than those of the other consuming groups (12.5 μg Hg g-1). Most of the samples presented a % of MeHg relative to THg higher than 80%. The average % of Hg(II)/THg was 11% and only 10 individuals presented a Hg(II) content over 30%. No significant differences (p > 0.05) were found when the amount of Hg(II) was compared between people involved in AGSM task and people not involved. Interestingly, significant differences among the evaluated groups where found when the percentage of the Hg(II)/THg ratio of these groups were compared. In fact, people involved in AGSM tasks showed 1.7 times higher Hg(II)/THg vs. inhabitants uninvolved. This suggest that Hg(II) determination by IDMS-GC-ICP-MS could be a good proxy for evaluating Hg(II) adsorption by direct exposure to mercury vapors onto hair.
Collapse
Affiliation(s)
- Laura Suárez-Criado
- Department of Physical and Analytical Chemistry, University of Oviedo, C/ Julián Clavería, 8, 33006 Oviedo, Spain
| | - Pablo Rodríguez-González
- Department of Physical and Analytical Chemistry, University of Oviedo, C/ Julián Clavería, 8, 33006 Oviedo, Spain
| | | | - J Ignacio García Alonso
- Department of Physical and Analytical Chemistry, University of Oviedo, C/ Julián Clavería, 8, 33006 Oviedo, Spain
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona18-26, 08034, Barcelona, Spain.
| |
Collapse
|
7
|
Bello TCS, Buralli RJ, Cunha MPL, Dórea JG, Diaz-Quijano FA, Guimarães JRD, Marques RC. Mercury Exposure in Women of Reproductive Age in Rondônia State, Amazon Region, Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5225. [PMID: 36982134 PMCID: PMC10049295 DOI: 10.3390/ijerph20065225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Environmental contamination by mercury (Hg) is a problem of global scale that affects human health. This study's aim was to evaluate Hg exposure among women of reproductive age residing in the Madeira River basin, in the State of Rondônia, Brazilian Amazon. This longitudinal cohort study used linear regression models to assess the effects on Hg levels of breastfeeding duration at 6 months, and of breastfeeding duration and number of new children at 2-year and 5-year. Breastfeeding duration was significantly associated with maternal Hg levels in all regression models (6 months, 2 years and 5 years) and no significant association was observed between the number of children and the change in maternal Hg levels in the 2-year and 5-year models. This longitudinal cohort study evaluated Hg levels and contributing factors among pregnant women from different communities (riverine, rural, mining and urban) in Rondônia, Amazon Region, for 5 years. A well-coordinated and designed national biomonitoring program is urgently needed to better understand the current situation of Hg levels in Brazil and the Amazon.
Collapse
Affiliation(s)
- Thayssa C. S. Bello
- Programa de Pós-Graduação em Ciências Ambientais e Conservação, Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, Brazil;
| | - Rafael J. Buralli
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo 01246-903, Brazil;
| | - Mônica P. L. Cunha
- Programa de Pós-Graduação em Desenvolvimento Regional e Meio Ambiente, Universidade Federal de Rondônia (UNIR), Porto Velho 76801-058, Brazil;
| | - José G. Dórea
- Departamento de Nutrição, Universidade de Brasília (UnB), Brasilia 70970-000, Brazil;
| | - Fredi A. Diaz-Quijano
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo (USP), São Paulo 01246-904, Brazil;
| | - Jean R. D. Guimarães
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, Brazil;
| | - Rejane C. Marques
- Programa de Pós-Graduação em Ciências Ambientais e Conservação, Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, Brazil;
| |
Collapse
|
8
|
Wang Q, Wang X, Wang Y, Hou Y. Evaluation and analysis of the toxicity of mercury (Hg 2+) to allophycocyanin from Spirulina platensis in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76881-76889. [PMID: 35672637 DOI: 10.1007/s11356-022-21190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
As a global environmental pollution problem, heavy metal pollution has brought great harm to human beings. In this work, we studied the toxicity of Hg2+ on allophycocyanin (APC) at the molecular level. Firstly, APC was extracted and purified from Spirulina platensis mud and its purity (A650/A280) reached 3.75. In addition, the fluorescence intensity of APC decreased with increasing Hg2+ concentration from 0 to 5 × 10-6 mol L-1. The theoretical calculation and experimental results showed that the fluorescence quenching of APC by Hg2+ was static and had a good linear relationship. Moreover, the UV-Vis spectra of APC showed a significant decrease at 200 nm and 650 nm with the increase of Hg2+ concentration from 0 to 5×10-6 mol L-1, and a red-shift at 200 nm, which indicated that Hg2+ not only affected the structure of APC but also affected the light absorption and photosynthetic function of APC. Furthermore, the results of molecular simulation demonstrate that Hg2+ combinations with the Met77, Cys81 in the α chain and the Arg77, Cys81 in the β chain, which interact between the peptide chain and the chromophore, and Hg2+ forms a Hg-S bond with -SH. This study provides new insights into the structure and how Hg2+ effect the optical properties of APC.
Collapse
Affiliation(s)
- Quanfu Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Xingteng Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Yatong Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Yanhua Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China.
| |
Collapse
|
9
|
Olivero-Verbel J, Alvarez-Ortega N, Alcala-Orozco M, Caballero-Gallardo K. Population exposure to lead and mercury in Latin America. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Lebbie TS, Moyebi OD, Asante KA, Fobil J, Brune-Drisse MN, Suk WA, Sly PD, Gorman J, Carpenter DO. E-Waste in Africa: A Serious Threat to the Health of Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8488. [PMID: 34444234 PMCID: PMC8392572 DOI: 10.3390/ijerph18168488] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022]
Abstract
Waste electronic and electrical equipment (e-waste) consists of used and discarded electrical and electronic items ranging from refrigerators to cell phones and printed circuit boards. It is frequently moved from developed countries to developing countries where it is dismantled for valuable metals in informal settings, resulting in significant human exposure to toxic substances. E-waste is a major concern in Africa, with large sites in Ghana and Nigeria where imported e-waste is dismantled under unsafe conditions. However, as in many developing countries, used electronic and electrical devices are imported in large quantities because they are in great demand and are less expensive than new ones. Many of these used products are irreparable and are discarded with other solid waste to local landfills. These items are then often scavenged for the purpose of extracting valuable metals by heating and burning, incubating in acids and other methods. These activities pose significant health risks to workers and residents in communities near recycling sites. E-waste burning and dismantling activities are frequently undertaken at e-waste sites, often in or near homes. As a result, children and people living in the surrounding areas are exposed, even if they are not directly involved in the recycling. While toxic substances are dangerous to individuals at any age, children are more vulnerable as they are going through important developmental processes, and some adverse health impacts may have long-term impacts. We review the e-waste situation in Africa with a focus on threats to children's health.
Collapse
Affiliation(s)
- Tamba S. Lebbie
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY 12144, USA; (T.S.L.); (O.D.M.)
| | - Omosehin D. Moyebi
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY 12144, USA; (T.S.L.); (O.D.M.)
| | | | - Julius Fobil
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, Accra, Ghana;
| | - Marie Noel Brune-Drisse
- Department of Environment, Climate Change and Health, World Organization, 1211 Geneva, Switzerland;
| | - William A. Suk
- A World Health Organization Collaborating Center on Children’s Environmental Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Peter D. Sly
- A World Health Organization Collaborating Center for Children’s Health and the Environment, Child Health Research Center, The University of Queensland, South Brisbane 4101, Australia;
| | - Julia Gorman
- Graduate School of Humanities and Social Sciences, University of Melbourne, Melbourne 3010, Australia;
| | - David O. Carpenter
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY 12144, USA; (T.S.L.); (O.D.M.)
- A World Health Organization Collaborating Center on Environmental Health, Institute for Health and the Environment, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|