1
|
Lu Z, Yao C, Tan B, Dong X, Yang Q, Liu H, Zhang S, Chi S. Effects of Lysophospholipid Supplementation in Feed with Low Protein or Lipid on Growth Performance, Lipid Metabolism, and Intestinal Flora of Largemouth Bass ( Micropterus salmoides). AQUACULTURE NUTRITION 2022; 2022:4347466. [PMID: 36860448 PMCID: PMC9973218 DOI: 10.1155/2022/4347466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 05/13/2023]
Abstract
The largemouth bass (Micropterus salmoides) were fed diets with three experimental feeds, a control diet (Control, crude protein (CP): 54.52%, crude lipid (CL): 11.45%), a low-protein diet with lysophospholipid (LP-Ly, CP: 52.46%, CL: 11.36%), and a low-lipid diet with lysophospholipid (LL-Ly, CP: 54.43%, CL: 10.19%), respectively. The LP-Ly and LL-Ly groups represented the addition of 1 g/kg of lysophospholipids in the low-protein and low-lipid groups, respectively. After a 64-day feeding trial, the experimental results showed that the growth performance, hepatosomatic index, and viscerosomatic index of largemouth bass in both the LP-Ly and LL-Ly groups were not significantly different compared to those in the Control group (P > 0.05). The condition factor and CP content of whole fish were significantly higher in the LP-Ly group than those in the Control group (P < 0.05). Compared with the Control group, the serum total cholesterol level and alanine aminotransferase enzyme activity were significantly lower in both the LP-Ly group and the LL-Ly group (P < 0.05). The protease and lipase activities in the liver and intestine of both group LL-Ly and group LP-Ly were significantly higher than those of the Control group (P < 0.05). Compared to both the LL-Ly group and the LP-Ly group, significantly lower liver enzyme activities and gene expression of fatty acid synthase, hormone-sensitive lipase, and carnitine palmitoyltransferase 1 were found in the Control group (P < 0.05). The addition of lysophospholipids increased the abundance of beneficial bacteria (Cetobacterium and Acinetobacter) and decreased the abundance of harmful bacteria (Mycoplasma) in the intestinal flora. In conclusion, the supplementation of lysophospholipids in low-protein or low-lipid diets had no negative effect on the growth performance of largemouth bass, but increased the activity of intestinal digestive enzymes, enhanced the hepatic lipid metabolism, promoted the protein deposition, and regulated the structure and diversity of the intestinal flora.
Collapse
Affiliation(s)
- Ziye Lu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Chunfeng Yao
- Guangdong Yuehai Feed Group Co., Ltd., Zhanjiang, Guangdong, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
2
|
Pilch HE, Steinberger AJ, Sockett DC, Aulik N, Suen G, Czuprynski CJ. Assessing the microbiota of recycled bedding sand on a Wisconsin dairy farm. J Anim Sci Biotechnol 2021; 12:114. [PMID: 34758888 PMCID: PMC8582206 DOI: 10.1186/s40104-021-00635-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sand is often considered the preferred bedding material for dairy cows as it is thought to have lower bacterial counts than organic bedding materials and cows bedded on sand experience fewer cases of lameness and disease. Sand can also be efficiently recycled and reused, making it cost-effective. However, some studies have suggested that the residual organic material present in recycled sand can serve as a reservoir for commensal and pathogenic bacteria, although no studies have yet characterized the total bacterial community composition. Here we sought to characterize the bacterial community composition of a Wisconsin dairy farm bedding sand recycling system and its dynamics across several stages of the recycling process during both summer and winter using 16S rRNA gene amplicon sequencing. RESULTS Bacterial community compositions of the sand recycling system differed by both seasons and stage. Summer samples had higher richness and distinct community compositions, relative to winter samples. In both summer and winter samples, the diversity of recycled sand decreased with time drying in the recycling room. Compositionally, summer sand 14 d post-recycling was enriched in operational taxonomic units (OTUs) belonging to the genera Acinetobacter and Pseudomonas, relative to freshly washed sand and sand from cow pens. In contrast, no OTUs were found to be enriched in winter sand. The sand recycling system contained an overall core microbiota of 141 OTUs representing 68.45% ± 10.33% SD of the total bacterial relative abundance at each sampled stage. The 4 most abundant genera in this core microbiota included Acinetobacter, Psychrobacter, Corynebacterium, and Pseudomonas. Acinetobacter was present in greater abundance in summer samples, whereas Psychrobacter and Corynebacterium had higher relative abundances in winter samples. Pseudomonas had consistent relative abundances across both seasons. CONCLUSIONS These findings highlight the potential of recycled bedding sand as a bacterial reservoir that warrants further study.
Collapse
Affiliation(s)
- Hannah E. Pilch
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| | - Andrew J. Steinberger
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706 USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, 53706 USA
| | - Donald C. Sockett
- Wisconsin Veterinary Diagnostic Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| | - Nicole Aulik
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
- Wisconsin Veterinary Diagnostic Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706 USA
| | - Charles J. Czuprynski
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| |
Collapse
|