1
|
Furxhi I, Koivisto AJ, Murphy F, Trabucco S, Del Secco B, Arvanitis A. Data Shepherding in Nanotechnology. The Exposure Field Campaign Template. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1818. [PMID: 34361203 PMCID: PMC8308211 DOI: 10.3390/nano11071818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022]
Abstract
In this paper, we demonstrate the realization process of a pragmatic approach on developing a template for capturing field monitoring data in nanomanufacturing processes. The template serves the fundamental principles which make data scientifically Findable, Accessible, Interoperable and Reusable (FAIR principles), as well as encouraging individuals to reuse it. In our case, the data shepherds' (the guider of data) template creation workflow consists of the following steps: (1) Identify relevant stakeholders, (2) Distribute questionnaires to capture a general description of the data to be generated, (3) Understand the needs and requirements of each stakeholder, (4) Interactive simple communication with the stakeholders for variables/descriptors selection, and (5) Design of the template and annotation of descriptors. We provide an annotated template for capturing exposure field campaign monitoring data, and increase their interoperability, while comparing it with existing templates. This paper enables the data creators of exposure field campaign data to store data in a FAIR way and helps the scientific community, such as data shepherds, by avoiding extensive steps for template creation and by utilizing the pragmatic structure and/or the template proposed herein, in the case of a nanotechnology project (Anticipating Safety Issues at the Design of Nano Product Development, ASINA).
Collapse
Affiliation(s)
- Irini Furxhi
- Transgero Limited, Cullinagh, Newcastle West, V42V384 Limerick, Ireland;
- Department of Accounting and Finance, Kemmy Business School, University of Limerick, V94T9PX Limerick, Ireland
| | - Antti Joonas Koivisto
- Air Pollution Management, Willemoesgade 16, st tv, DK-2100 Copenhagen, Denmark;
- ARCHE Consulting, Liefkensstraat 35D, B-9032 Wondelgem, Belgium
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, PL 64, FI-00014 Helsinki, Finland
| | - Finbarr Murphy
- Transgero Limited, Cullinagh, Newcastle West, V42V384 Limerick, Ireland;
- Department of Accounting and Finance, Kemmy Business School, University of Limerick, V94T9PX Limerick, Ireland
| | - Sara Trabucco
- Institute of Atmospheric Sciences and Climate (CNR-ISAC) Via Gobetti 101, 40129 Bologna, Italy; (S.T.); (B.D.S.)
| | - Benedetta Del Secco
- Institute of Atmospheric Sciences and Climate (CNR-ISAC) Via Gobetti 101, 40129 Bologna, Italy; (S.T.); (B.D.S.)
| | - Athanasios Arvanitis
- Environmental Informatics Research Group, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
2
|
Koivisto AJ, Spinazzè A, Verdonck F, Borghi F, Löndahl J, Koponen IK, Verpaele S, Jayjock M, Hussein T, Lopez de Ipiña J, Arnold S, Furxhi I. Assessment of exposure determinants and exposure levels by using stationary concentration measurements and a probabilistic near-field/far-field exposure model. OPEN RESEARCH EUROPE 2021; 1:72. [PMID: 37645135 PMCID: PMC10446057 DOI: 10.12688/openreseurope.13752.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 08/31/2023]
Abstract
Background: The Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation requires the establishment of Conditions of Use (CoU) for all exposure scenarios to ensure good communication of safe working practices. Setting CoU requires the risk assessment of all relevant Contributing Scenarios (CSs) in the exposure scenario. A new CS has to be created whenever an Operational Condition (OC) is changed, resulting in an excessive number of exposure assessments. An efficient solution is to quantify OC concentrations and to identify reasonable worst-case scenarios with probabilistic exposure modeling. Methods: Here, we appoint CoU for powder pouring during the industrial manufacturing of a paint batch by quantifying OC exposure levels and exposure determinants. The quantification was performed by using stationary measurements and a probabilistic Near-Field/Far-Field (NF/FF) exposure model. Work shift and OC concentration levels were quantified for pouring TiO 2 from big bags and small bags, pouring Micro Mica from small bags, and cleaning. The impact of exposure determinants on NF concentration level was quantified by (1) assessing exposure determinants correlation with the NF exposure level and (2) by performing simulations with different OCs. Results: Emission rate, air mixing between NF and FF and local ventilation were the most relevant exposure determinants affecting NF concentrations. Potentially risky OCs were identified by performing Reasonable Worst Case (RWC) simulations and by comparing the exposure 95 th percentile distribution with 10% of the occupational exposure limit value (OELV). The CS was shown safe except in RWC scenario (ventilation rate from 0.4 to 1.6 1/h, 100 m 3 room, no local ventilation, and NF ventilation of 1.6 m 3/min). Conclusions: The CoU assessment was considered to comply with European Chemicals Agency (ECHA) legislation and EN 689 exposure assessment strategy for testing compliance with OEL values. One RWC scenario would require measurements since the exposure level was 12.5% of the OELV.
Collapse
Affiliation(s)
- Antti Joonas Koivisto
- Air Pollution Management, Willemoesgade 16, st tv, Copenhagen, DK-2100, Denmark
- ARCHE Consulting, Liefkensstraat 35D, Wondelgem, B-9032, Belgium
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, PL 64, Helsinki, FI-00014 UHEL, Finland
| | - Andrea Spinazzè
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, Como, IT-22100, Italy
| | | | - Francesca Borghi
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, Como, IT-22100, Italy
| | - Jakob Löndahl
- Division of Ergonomics and Aerosol Technology, Lund University, Lund, SE-22100, Sweden
| | | | - Steven Verpaele
- Nickel Institute, Rue Belliard 12, Brussels, B-1040, Belgium
- Belgian Center for Occupational Hygiene, Technologiepark 122, Zwijnaarde, B-9040, Belgium
| | - Michael Jayjock
- Jayjock Associates, LLC, 168 Millpond Place, Langhorne, PA, USA
| | - Tareq Hussein
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, PL 64, Helsinki, FI-00014 UHEL, Finland
- Department of Physics, The University of Jordan, Amman, 11942, Jordan
| | - Jesus Lopez de Ipiña
- TECNALIA Research and Innovation - Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Leonardo Da Vinci 11, Miñano, 01510, Spain
| | - Susan Arnold
- School of Public Health, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, USA
| | - Irini Furxhi
- Department of Accounting and Finance, Kemmy Business School, University of Limerick, Limerick, V94 T9PX, Ireland
- Transgero Limited, Cullinagh, Newcastle West, Co. Limerick, Limerick, V42 V384, Ireland
| |
Collapse
|