1
|
Wratsangka R, Tungka EX, Murthi AK, Ali S, Nainggolan IM, Sahiratmadja E. Anemia among Medical Students from Jakarta: Indonesia-Iron Deficiency or Carrier Thalassemia? Anemia 2024; 2024:4215439. [PMID: 38716362 PMCID: PMC11074909 DOI: 10.1155/2024/4215439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
Background Anemia, a global health concern, affects one-fourth of the global population, particularly women. In Indonesia, its prevalence is 23.7%, with 32.0% among 15-24 year-olds. Factors include poor nutrition, infectious diseases, chronic diseases, inherited disorders, and inadequate healthcare access. This study aimed to investigate anemia prevalence and its etiology among medical students from Jakarta. Methods This study was a descriptive research with a cross-sectional approach. Undergraduate students aged 18-23 years old were selected and consented to participate by a consecutive nonrandom sampling methods. Laboratory blood data were evaluated (including Hb, MCV, MCH, HbA2, and ferritin levels) and DNA was isolated to confirm the type of thalassemia carrier. Results In total, 140 medical students, mainly female, were recruited. Anemia was found in 13.6% (11.4% had low MCV and/or MCH), and 16.5% had low MCV and/or MCH without anemia. Hb electrophoresis revealed high HbA2 values, suggesting the HbE variant (2.1%), and β-thalassemia carrier (0.7%). DNA analysis confirmed the cd26 mutation and heterozygous IVS1nt5. Among those without anemia, 5% had α-deletion, while in the group with anemia, 1.4% had α-deletion (with coexistent IDA), 3.6% had α-deletion, and 0.7% had β-mutation. Conclusion DNA analysis can identify specific mutations associated with alpha-thalassemia, distinguishing between iron deficiency anemia and the alpha-thalassemia trait. Thalassemia screening should involve low MCV and/or MCH values as the first step (stage 1), followed by Hb analysis (stage 2) and DNA analysis (stage 3). In common areas, a combination of Hb and DNA testing is best. However, healthcare professionals must diagnose and treat thalassemia, as proper management relies on accurately identifying the underlying condition.
Collapse
Affiliation(s)
- Raditya Wratsangka
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Trisakti, West Jakarta, Indonesia
| | | | - Aditya Krishna Murthi
- Department of Medical Physiology, Faculty of Medicine, Universitas Trisakti, West Jakarta, Indonesia
| | - Soegianto Ali
- Department of Medical Biology, Biomedical Science Study Program, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, South Jakarta, Indonesia
| | - Ita Margaretha Nainggolan
- Biomedical Science Study Program, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, South Jakarta, Indonesia
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Bogor, Indonesia
| | - Edhyana Sahiratmadja
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
2
|
Fekete M, Lehoczki A, Tarantini S, Fazekas-Pongor V, Csípő T, Csizmadia Z, Varga JT. Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients 2023; 15:5116. [PMID: 38140375 PMCID: PMC10746024 DOI: 10.3390/nu15245116] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cognitive impairment and dementia are burgeoning public health concerns, especially given the increasing longevity of the global population. These conditions not only affect the quality of life of individuals and their families, but also pose significant economic burdens on healthcare systems. In this context, our comprehensive narrative review critically examines the role of nutritional supplements in mitigating cognitive decline. Amidst growing interest in non-pharmacological interventions for cognitive enhancement, this review delves into the efficacy of vitamins, minerals, antioxidants, and other dietary supplements. Through a systematic evaluation of randomized controlled trials, observational studies, and meta-analysis, this review focuses on outcomes such as memory enhancement, attention improvement, executive function support, and neuroprotection. The findings suggest a complex interplay between nutritional supplementation and cognitive health, with some supplements showing promising results and others displaying limited or context-dependent effectiveness. The review highlights the importance of dosage, bioavailability, and individual differences in response to supplementation. Additionally, it addresses safety concerns and potential interactions with conventional treatments. By providing a clear overview of current scientific knowledge, this review aims to guide healthcare professionals and researchers in making informed decisions about the use of nutritional supplements for cognitive health.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Andrea Lehoczki
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary;
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
3
|
Suliburska J, Wawrzyniak N, Gramza-Michałowska A, Kurzawa P. Calcium-Deficit Diet Improves Iron Content in Ovariectomized Rats. Biol Trace Elem Res 2023; 201:4806-4811. [PMID: 36624332 PMCID: PMC10415432 DOI: 10.1007/s12011-023-03556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
In women, menopause is associated with disorders related to calcium and iron content, which may increase the risk of osteoporosis. This study aimed to determine the effect of calcium deficiency on the iron content in ovariectomized rats. This study included 30 3-month-old female rats, which were divided into three groups: group C (n = 10)-control group fed the standard diet; group O-ovariectomized rats fed the standard diet; and group D-ovariectomized rats fed the calcium-deficit diet. After 3 months of experimental intervention, the weight of the rats was measured, and blood and tissue samples were collected. Morphological parameters were analyzed in whole blood, and serum levels of leptin, estrogen and C-reactive protein, and total antioxidant status were determined. The iron content was measured in tissues, and histological analysis was performed in the femur. The results obtained demonstrated that ovariectomy significantly decreased the iron content in bones, hair, spleen, liver, and kidneys. The calcium-deficit diet increased the iron content in tissues and the hemoglobin level in ovariectomized rats and also enhanced the number of osteoblasts in bones compared with the O group. In conclusion, calcium deficiency improved the iron content in ovariectomized rats in this 12-week study.
Collapse
Affiliation(s)
- Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland.
| | - Natalia Wawrzyniak
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Paweł Kurzawa
- Department of Clinical Pathology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznań, Poland
- Department of Oncological Pathology, University Hospital of Lord's Transfiguration, Partner of Karol Marcinkowski University of Medical Sciences, Szamarzewskiego 84, 60-569, Poznań, Poland
| |
Collapse
|
4
|
Cao X, Wu M, Zhang G, Lin L, Tu M, Xiao D, Zhong C, Zhang H, Yang S, Liu J, Zhang X, Chen X, Wang X, Zhang Y, Xu S, Zhou X, Yang X, Hao L, Yang N. Longitudinal plasma magnesium status during pregnancy and the risk of gestational diabetes mellitus: a prospective cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65392-65400. [PMID: 37084048 DOI: 10.1007/s11356-023-26855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Emerging evidence has shown that magnesium (Mg) was associated with type 2 diabetes while few focused on abnormal glucose metabolism during pregnancy. The study is aimed at investigating the association between longitudinal changes in plasma Mg during pregnancy and subsequent risk of gestational diabetes (GDM) and exploring the possible influence of iron supplementation on the changes of plasma Mg levels. One thousand seven hundred fifty-six pregnant women from Tongji Maternal and Child Health Cohort (TMCHC) were involved. Blood samples were collected at gestational weeks 17.0 ± 0.9 and later 26.2 ± 1.4. Plasma Mg was measured by inductively coupled plasma mass spectrometry (ICP-MS) with decline rates calculated. Information on general characteristics and iron supplementation was collected by questionnaires. Oral glucose tolerance test (OGTT) was conducted at 24-28 gestational weeks to diagnose GDM. Poisson regression with robust error variance was used to estimate relative risks (RR) of GDM. Median concentrations of plasma Mg were 0.69 mmol/L and 0.63 mmol/L respectively at two collections. The prevalence of hypomagnesemia at the first collection was 73% and associated with a 1.59 (95%CI: 1.07, 2.37) fold risk of GDM. Adjusted RRs were 1.74 (95%CI: 1.06, 2.83) and 2.44 (95%CI: 1.54, 3.85) for women with hypomagnesemia and followed more tertile (T2 and T3 vs. T1) of Mg decrement. Iron supplementation above 30 mg/day was found associated with more Mg decrement (25.5% and 27.5% in T2 and T3 vs. 19.5% in T1). In conclusion, hypomagnesemia during pregnancy is prevalent and associated with increased GDM risk, especially in women followed by more plasma Mg decrement during pregnancy. High-dose iron supplementation may involve more plasma Mg decrement.
Collapse
Affiliation(s)
- Xiyu Cao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Meng Wu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lixia Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Menghan Tu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Daxiang Xiao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Chunrong Zhong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Siyu Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Jin Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xu Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xi Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xiaoyi Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yu Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Shangzhi Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xuezhen Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Nianhong Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Azevedo R, Oliveira AR, Almeida A, Gomes LR. Determination by ICP-MS of Essential and Toxic Trace Elements in Gums and Carrageenans Used as Food Additives Commercially Available in the Portuguese Market. Foods 2023; 12:1408. [PMID: 37048229 PMCID: PMC10093682 DOI: 10.3390/foods12071408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Gums and carrageenans are food additives widely used in food preparations to improve texture and as viscosifiers. Although they are typically added in small amounts, nowadays people tend to use more and more pre-prepared food. In this work, the content of a wide panel of trace elements in commercial products were analyzed. Carrageenans and gums (n = 13) were purchased in the Portuguese market and were from European suppliers. Samples were solubilized by closed-vessel microwave-assisted acid digestion and analyzed by ICP-MS. Globally, the content of essential trace elements decreased in the following order: Fe (on average, on the order of several tens of µg/g) > Mn > Zn > Cr > Cu > Co > Se > Mo (typically < 0.1 µg/g), while the content of non-essential/toxic trace elements decreased in the following order: Al > Sr > Rb > As > Li > Cd > Pb > Hg. The consumption of these food additives can significantly contribute to the daily requirements of some essential trace elements, namely Cr and Mo. The toxic trace elements Cd, As, Pb, and Hg were below the EU regulatory limits in all analyzed samples. Additional research is needed to define the potential risk of introducing toxic trace elements into food products through the use of these additives.
Collapse
Affiliation(s)
- Rui Azevedo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | | | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Lígia Rebelo Gomes
- FP-I3ID, University Fernando Pessoa, 4249-004 Porto, Portugal
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|