1
|
Farkas B, Vojtková H, Farkas Z, Pangallo D, Kasak P, Lupini A, Kim H, Urík M, Matúš P. Involvement of Bacterial and Fungal Extracellular Products in Transformation of Manganese-Bearing Minerals and Its Environmental Impact. Int J Mol Sci 2023; 24:ijms24119215. [PMID: 37298163 DOI: 10.3390/ijms24119215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Manganese oxides are considered an essential component of natural geochemical barriers due to their redox and sorptive reactivity towards essential and potentially toxic trace elements. Despite the perception that they are in a relatively stable phase, microorganisms can actively alter the prevailing conditions in their microenvironment and initiate the dissolution of minerals, a process that is governed by various direct (enzymatic) or indirect mechanisms. Microorganisms are also capable of precipitating the bioavailable manganese ions via redox transformations into biogenic minerals, including manganese oxides (e.g., low-crystalline birnessite) or oxalates. Microbially mediated transformation influences the (bio)geochemistry of manganese and also the environmental chemistry of elements intimately associated with its oxides. Therefore, the biodeterioration of manganese-bearing phases and the subsequent biologically induced precipitation of new biogenic minerals may inevitably and severely impact the environment. This review highlights and discusses the role of microbially induced or catalyzed processes that affect the transformation of manganese oxides in the environment as relevant to the function of geochemical barriers.
Collapse
Affiliation(s)
- Bence Farkas
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, 708 00 Ostrava, Czech Republic
| | - Zuzana Farkas
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 84551 Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 84551 Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Antonio Lupini
- Department of Agraria, Mediterranea University of Reggio Calabria, Feo di Vito snc, 89124 Reggio Calabria, Italy
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
2
|
Farkas B, Vojtková H, Bujdoš M, Kolenčík M, Šebesta M, Matulová M, Duborská E, Danko M, Kim H, Kučová K, Kisová Z, Matúš P, Urík M. Fungal Mobilization of Selenium in the Presence of Hausmannite and Ferric Oxyhydroxides. J Fungi (Basel) 2021; 7:jof7100810. [PMID: 34682232 PMCID: PMC8539610 DOI: 10.3390/jof7100810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/06/2023] Open
Abstract
Bioleaching of mineral phases plays a crucial role in the mobility and availability of various elements, including selenium. Therefore, the leachability of selenium associated with the surfaces of ferric and manganese oxides and oxyhydroxides, the prevailing components of natural geochemical barriers, has been studied in the presence of filamentous fungus. Both geoactive phases were exposed to selenate and subsequently to growing fungus Aspergillus niger for three weeks. This common soil fungus has shown exceptional ability to alter the distribution and mobility of selenium in the presence of both solid phases. The fungus initiated the extensive bioextraction of selenium from the surfaces of amorphous ferric oxyhydroxides, while the hausmannite (Mn3O4) was highly susceptible to biodeterioration in the presence of selenium. This resulted in specific outcomes regarding the selenium, iron, and manganese uptake by fungus and residual selenium concentrations in mineral phases as well. The adverse effects of bioleaching on fungal growth are also discussed.
Collapse
Affiliation(s)
- Bence Farkas
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB–Technical University of Ostrava, 17. Listopadu 15/2172, 708 00 Ostrava, Czech Republic; (H.V.); (K.K.)
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Martin Šebesta
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Michaela Matulová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Eva Duborská
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Martin Danko
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia;
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea;
- Department of Environment and Energy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea
| | - Kateřina Kučová
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB–Technical University of Ostrava, 17. Listopadu 15/2172, 708 00 Ostrava, Czech Republic; (H.V.); (K.K.)
| | - Zuzana Kisová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia;
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
- Correspondence:
| |
Collapse
|